Properties of solutions of linear evolutionary systems with elliptic space part
Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 369-397

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the system $\mathscr L(t,x;\frac\partial{\partial t},D_x)u=f$, where $\mathscr L$ is an $N\times N$ matrix such that the matrix $\mathscr L(t,x;0,i,\sigma)$ is uniformly Petrovskii elliptic. We establish unimprovable estimates of the growth of the solutio belonging to a convex cone of the space $C^N$ in a band, in a halfspace, and in the entire space. These estimates are applied to obtain new uniqueness theorems for Cauchy's problem. Bibliography: 12 titles.
@article{SM_1970_10_3_a5,
     author = {V. A. Kondrat'ev and S. D. \`Eidel'man},
     title = {Properties of solutions of linear evolutionary systems with elliptic space part},
     journal = {Sbornik. Mathematics},
     pages = {369--397},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_3_a5/}
}
TY  - JOUR
AU  - V. A. Kondrat'ev
AU  - S. D. Èidel'man
TI  - Properties of solutions of linear evolutionary systems with elliptic space part
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 369
EP  - 397
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_3_a5/
LA  - en
ID  - SM_1970_10_3_a5
ER  - 
%0 Journal Article
%A V. A. Kondrat'ev
%A S. D. Èidel'man
%T Properties of solutions of linear evolutionary systems with elliptic space part
%J Sbornik. Mathematics
%D 1970
%P 369-397
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_3_a5/
%G en
%F SM_1970_10_3_a5
V. A. Kondrat'ev; S. D. Èidel'man. Properties of solutions of linear evolutionary systems with elliptic space part. Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 369-397. http://geodesic.mathdoc.fr/item/SM_1970_10_3_a5/