Properties of solutions of linear evolutionary systems with elliptic space part
Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 369-397
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the system $\mathscr L(t,x;\frac\partial{\partial t},D_x)u=f$, where $\mathscr L$ is an $N\times N$ matrix such that the matrix $\mathscr L(t,x;0,i,\sigma)$ is uniformly Petrovskii elliptic. We establish unimprovable estimates of the growth of the solutio belonging to a convex cone of the space $C^N$ in a band, in a halfspace, and in the entire space. These estimates are applied to obtain new uniqueness theorems for Cauchy's problem.
Bibliography: 12 titles.
@article{SM_1970_10_3_a5,
author = {V. A. Kondrat'ev and S. D. \`Eidel'man},
title = {Properties of solutions of linear evolutionary systems with elliptic space part},
journal = {Sbornik. Mathematics},
pages = {369--397},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_10_3_a5/}
}
TY - JOUR AU - V. A. Kondrat'ev AU - S. D. Èidel'man TI - Properties of solutions of linear evolutionary systems with elliptic space part JO - Sbornik. Mathematics PY - 1970 SP - 369 EP - 397 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_10_3_a5/ LA - en ID - SM_1970_10_3_a5 ER -
V. A. Kondrat'ev; S. D. Èidel'man. Properties of solutions of linear evolutionary systems with elliptic space part. Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 369-397. http://geodesic.mathdoc.fr/item/SM_1970_10_3_a5/