A strong zero theorem for an elliptic equation of high order
Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 349-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we examine a uniformly elliptic equation of high order with simple complex characteristics and with coefficients from $C^1$, defined in a domain $\Omega\subset R^n$ and satisfying there a supplementary condition. At the point $x_0\in\Omega$ let the solution $u(x)$ of this equation have a zero of infinite order. It is shown that then $u\equiv0$ in $\Omega$. Whence a uniqueness theorem is derived for the solution of the Cauchy problem for the equation in question, when the Cauchy data are prescribed on an $(n-1)$-dimensional set of positive measure in the interior of the domain. Bibliography: 10 titles.
@article{SM_1970_10_3_a4,
     author = {E. G. Sitnikova},
     title = {A~strong zero theorem for an elliptic equation of high order},
     journal = {Sbornik. Mathematics},
     pages = {349--367},
     year = {1970},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_3_a4/}
}
TY  - JOUR
AU  - E. G. Sitnikova
TI  - A strong zero theorem for an elliptic equation of high order
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 349
EP  - 367
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_3_a4/
LA  - en
ID  - SM_1970_10_3_a4
ER  - 
%0 Journal Article
%A E. G. Sitnikova
%T A strong zero theorem for an elliptic equation of high order
%J Sbornik. Mathematics
%D 1970
%P 349-367
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1970_10_3_a4/
%G en
%F SM_1970_10_3_a4
E. G. Sitnikova. A strong zero theorem for an elliptic equation of high order. Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 349-367. http://geodesic.mathdoc.fr/item/SM_1970_10_3_a4/

[1] T. Carleman, “Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables”, C. R. Acad. Sci., 197, Paris, 1933, 471–474 | Zbl

[2] H. O. Cordes, “Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben”, Nachr. Akad. Wiss. Göttingen Math.-Phys., 11 (1956), 239–258 | MR

[3] E. M. Landis, “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka (sluchai mnogikh nezavisimykh peremennykh)”, Uspekhi matem. nauk, XVIII:1(109) (1963), 3–62 | MR

[4] E. G. Sitnikova, “Odna teorema edinstvennosti resheniya zadachi Koshi dlya lineinogo ellipticheskogo uravneniya vtorogo poryadka”, Vestnik MGU, seriya matem., mekh., 1967, no. 2, 36–40 | MR | Zbl

[5] L. Khërmander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, Moskva, 1965 | MR

[6] L. Shvarts, Kompleksnye analiticheskie mnogoobraziya. Ellipticheskie uravneniya s chastnymi proizvodnymi, Mir, Moskva, 1964 | MR

[7] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, t. III, Nauka, Moskva, 1966

[8] M. M. Elborai, O korrektnoi postanovke zadachi Koshi, Dissertatsiya, MGU, 1968

[9] Ya. B. Lopatinskii, “Fundamentalnaya sistema reshenii sistemy lineinykh differentsialnykh uravnenii ellipticheskogo tipa”, DAN SSSR, 71:3 (1950), 433–436 | MR | Zbl

[10] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. sb., 29(71) (1951), 615–676 | Zbl