Representations of pseudo-orthogonal groups associated with a~cone
Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 333-347
Voir la notice de l'article provenant de la source Math-Net.Ru
We study representations of the group $SO_0(p,q)$, $p>1$, $q>1$, in the spaces $D_\chi$, $\chi=(\sigma,\varepsilon)$ ($\sigma$ is a complex number; $\varepsilon=0$ or 1), of $C^\infty$-functions $\varphi(x)$ on the cone $-x_1^2-\dots-x_p^2+x_{p+1}^2+\dots+x_{p+q}^2=0$, $x\ne0$, of homogeneous degree $\sigma$ and parity $\varepsilon$: $\varphi(tx)=|t|^\sigma{\operatorname{sign}}^\varepsilon t\cdot\varphi(x)$. We consider the structure of the invariant subspaces, irreducibility, the operators which commute with the group (the intertwining operators), invariant Hermitian forms, and unitarity.
Figures: 1.
Bibliography: 12 titles.
@article{SM_1970_10_3_a3,
author = {V. F. Molchanov},
title = {Representations of pseudo-orthogonal groups associated with a~cone},
journal = {Sbornik. Mathematics},
pages = {333--347},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_10_3_a3/}
}
V. F. Molchanov. Representations of pseudo-orthogonal groups associated with a~cone. Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 333-347. http://geodesic.mathdoc.fr/item/SM_1970_10_3_a3/