Representations of pseudo-orthogonal groups associated with a~cone
Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 333-347

Voir la notice de l'article provenant de la source Math-Net.Ru

We study representations of the group $SO_0(p,q)$, $p>1$, $q>1$, in the spaces $D_\chi$, $\chi=(\sigma,\varepsilon)$ ($\sigma$ is a complex number; $\varepsilon=0$ or 1), of $C^\infty$-functions $\varphi(x)$ on the cone $-x_1^2-\dots-x_p^2+x_{p+1}^2+\dots+x_{p+q}^2=0$, $x\ne0$, of homogeneous degree $\sigma$ and parity $\varepsilon$: $\varphi(tx)=|t|^\sigma{\operatorname{sign}}^\varepsilon t\cdot\varphi(x)$. We consider the structure of the invariant subspaces, irreducibility, the operators which commute with the group (the intertwining operators), invariant Hermitian forms, and unitarity. Figures: 1. Bibliography: 12 titles.
@article{SM_1970_10_3_a3,
     author = {V. F. Molchanov},
     title = {Representations of pseudo-orthogonal groups associated with a~cone},
     journal = {Sbornik. Mathematics},
     pages = {333--347},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_3_a3/}
}
TY  - JOUR
AU  - V. F. Molchanov
TI  - Representations of pseudo-orthogonal groups associated with a~cone
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 333
EP  - 347
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_3_a3/
LA  - en
ID  - SM_1970_10_3_a3
ER  - 
%0 Journal Article
%A V. F. Molchanov
%T Representations of pseudo-orthogonal groups associated with a~cone
%J Sbornik. Mathematics
%D 1970
%P 333-347
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_3_a3/
%G en
%F SM_1970_10_3_a3
V. F. Molchanov. Representations of pseudo-orthogonal groups associated with a~cone. Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 333-347. http://geodesic.mathdoc.fr/item/SM_1970_10_3_a3/