Almost stability of Hamilton's equations with quasiperiodic operator coefficients
Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 289-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article studies a hamiltonian equation in Hilbert space which differs by only small quasiperiodic perturbations from equations with constant coefficients with several special properties. Necessary and sufficient conditions are obtained for strong formal stability of the hamiltonian equation with constant coefficients within some class of quasiperiodic perturbations. In the case of periodic perturbations, the result obtained allows us to extend to the class of equations studied here, the well known theorem of Krein, Gel'fand, and Lidskii on strong stability of hamiltonian systems. Bibliography: 17 titles.
@article{SM_1970_10_3_a0,
     author = {V. N. Fomin},
     title = {Almost stability of {Hamilton's} equations with quasiperiodic operator coefficients},
     journal = {Sbornik. Mathematics},
     pages = {289--306},
     year = {1970},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_3_a0/}
}
TY  - JOUR
AU  - V. N. Fomin
TI  - Almost stability of Hamilton's equations with quasiperiodic operator coefficients
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 289
EP  - 306
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_3_a0/
LA  - en
ID  - SM_1970_10_3_a0
ER  - 
%0 Journal Article
%A V. N. Fomin
%T Almost stability of Hamilton's equations with quasiperiodic operator coefficients
%J Sbornik. Mathematics
%D 1970
%P 289-306
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1970_10_3_a0/
%G en
%F SM_1970_10_3_a0
V. N. Fomin. Almost stability of Hamilton's equations with quasiperiodic operator coefficients. Sbornik. Mathematics, Tome 10 (1970) no. 3, pp. 289-306. http://geodesic.mathdoc.fr/item/SM_1970_10_3_a0/

[1] M. G. Krein, Osnovnye polozheniya teorii $\lambda$-zon ustoichivosti kanonicheskoi sistemy lineinykh differentsialnykh uravnenii s periodicheskimi koeffitsientami, Sb. “Pamyati A. A. Andronova”, AN SSSR, Moskva, 1955

[2] I. M. Gelfand, V. B. Lidskii, “O strukture oblastei ustoichivosti lineinykh kanonicheskikh sistem differentsialnykh uravnenii s periodicheskimi koeffitsientami”, Uspekhi matem. nauk, X:1(63) (1956), 3–40 | MR

[3] M. G. Krein, V. A. Yakubovich, Gamiltonovy sistemy lineinykh differentsialnykh uravnenii s periodicheskimi koeffitsientami, Trudy mezhdunarodnogo simpoziuma po nelineinym kolebaniyam, t. 1, Kiev, 1963

[4] V. N. Fomin, “Ob ustoichivosti lineinykh gamiltonovykh uravnenii s periodicheskimi koeffitsientami v gilbertovom prostranstve”, Vestnik LGU, 2:7 (1964), 37–45 | Zbl

[5] V. I. Derguzov, “Dostatochnye usloviya ustoichivosti lineinykh gamiltonovykh uravnenii s neogranichennymi periodicheskimi operatornymi koeffitsientami”, Matem. sb., 64(106) (1964), 419–435 | MR | Zbl

[6] V. I. Derguzov, “Neobkhodimye usloviya silnoi ustoichivosti gamiltonovykh uravnenii s neogranichennymi, periodicheskimi operatornymi koeffitsientami”, Vestnik LGU, 4:19 (1964), 18–30 | MR | Zbl

[7] A. E. Gelman, “O privodimosti odnogo klassa sistem differentsialnykh uravnenii s kvaziperiodicheskimi koeffitsientami”, DAN SSSR, 116:4 (1957), 535–537 | MR

[8] L. Ya. Andrianova, “O privodimosti sistem $n$-lineinykh differentsialnykh uravnenii s kvaziperiodicheskimi koeffitsientami”, Vestnik LGU, 2:7 (1962)

[9] Yu. A. Mitropolskii, A. M. Samoilenko, K voprosu postroeniya reshenii lineinykh differentsialnykh uravnenii s kvaziperiodicheskimi koeffitsientami, Sb. “Matematicheskaya fizika”, 3, Naukova dumka, Kiev, 1967

[10] G. A. Krasinskii, “Parametricheskii rezonans v kanonicheskikh sistemakh lineinykh differentsialnykh uravnenii s kvaziperiodicheskimi koeffitsientami”, DAN SSSR, 180:3 (1968), 526–529 | MR | Zbl

[11] J. Moser, “A new aspect in the theory of stability of Hamilton systems”, Comm. Pure and Appl. Math., 1955, no. 1, 81–114 | MR

[12] Dzh. D. Birkgof, Dinamicheskie sistemy, IL, Moskva, 1941

[13] V. N. Fomin, “Rezonans kolebanii lineinykh sistem pod deistviem pochti-periodicheskogo parametricheskogo vozmuscheniya. I i II”, Problemy matematicheskogo analiza, no. 2, LGU, 1969, 28–79

[14] V. V. Fomin, “O dinamicheskoi neustoichivosti lineinykh sistem s pochti-periodicheskimi koeffitsientami”, DAN SSSR, 178:1 (1968), 43–46 | Zbl

[15] V. N. Fomin, “Oblasti dinamicheskoi neustoichivosti parametricheski vozbuzhdaemykh sistem s beskonechnym chislom stepenei svobody”, Problemy matematicheskogo analiza, LGU, 1966, 135–165

[16] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, Moskva, 1962

[17] F. Rise, B. S. Nad, Lektsii po funktsionalnomu analizu, IL, Moskva, 1954