Imbedding of locally unknotted one-dimensional manifolds in~$E^3$
Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 267-287

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that each locally unknotted simple arc in three-dimensional euclidean space $E^3$ lies on a disc $D\subset E^3$, whence it follows that there exists a pseudo-isotopy of the space $E^3$ which carries a line segment into the locally unknotted simple arc. Bibliography: 16 titles.
@article{SM_1970_10_2_a7,
     author = {Lyudmila Keldysh},
     title = {Imbedding of locally unknotted one-dimensional manifolds in~$E^3$},
     journal = {Sbornik. Mathematics},
     pages = {267--287},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/}
}
TY  - JOUR
AU  - Lyudmila Keldysh
TI  - Imbedding of locally unknotted one-dimensional manifolds in~$E^3$
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 267
EP  - 287
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/
LA  - en
ID  - SM_1970_10_2_a7
ER  - 
%0 Journal Article
%A Lyudmila Keldysh
%T Imbedding of locally unknotted one-dimensional manifolds in~$E^3$
%J Sbornik. Mathematics
%D 1970
%P 267-287
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/
%G en
%F SM_1970_10_2_a7
Lyudmila Keldysh. Imbedding of locally unknotted one-dimensional manifolds in~$E^3$. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 267-287. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/