@article{SM_1970_10_2_a7,
author = {Lyudmila Keldysh},
title = {Imbedding of locally unknotted one-dimensional manifolds in~$E^3$},
journal = {Sbornik. Mathematics},
pages = {267--287},
year = {1970},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/}
}
Lyudmila Keldysh. Imbedding of locally unknotted one-dimensional manifolds in $E^3$. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 267-287. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/
[1] E. Artin, R. H. Fox, “Some wild cells and spheres in three-dimensional space”, Ann. Math., 49 (1948), 979–990 | DOI | MR | Zbl
[2] R. H. Bing, “Approximating surfaces with polyhedral ones”, Ann. Math., 65 (1957), 456–483 | DOI | MR | Zbl
[3] R. H. Bing, “Each disk in $E^3$ is pierced by a tame arc”, Amer. J. Math., 84 (1962), 591–599 | DOI | MR | Zbl
[4] R. H. Bing, “Each disk in $E^3$ contains a tame arc”, Amer. J. Math., 84 (1962), 583–590 | DOI | MR | Zbl
[5] R. H. Bing, “Locally tame sets are tame”, Ann. Math., 59 (1954), 145–158 | DOI | MR | Zbl
[6] R. H. Bing, “Pusching a $2$-sphere into its complement”, Michig. Math. J., 11 (1964), 33–45 | DOI | MR | Zbl
[7] R. H. Bing, “Improving the side approximation theorem”, Trans. Amer. Math. Soc., 116:4 (1965), 511–535 | DOI | MR
[8] R. F. Craggs, Small anibient isotopies of a $3$-manifold which transforme one embedding of a polyhedra into another, Thesis, Univ. Wisconsin, 1966 | Zbl
[9] P. H. Doyle, “Unions of cell pairs in $E^3$”, Pacific J. Math., 10:2 (1960), 521–524 | MR | Zbl
[10] O. G. Harrold, H. G. Griffith, E. E. Posey, “A characterization of tame curves in $3$-space”, Trans. Amer. Math. Soc., 79 (1955), 12–35 | DOI | MR
[11] J. M. Kister, “Isotopies in $3$-manifolds”, Trans. Amer. Math. Soc., 97:2 (1960), 213–224 | DOI | MR | Zbl
[12] I. Martin, “Tame arcs on disks”, Proc Amer. Math. Soc., 16:1 (1965), 131–133 | DOI | MR | Zbl
[13] E. E. Moise, “Affine structure in $3$-manifolds. VIII”, Ann. Math., 59 (1954), 159–170 | DOI | MR | Zbl
[14] L. V. Keldysh, “Topologicheskie vlozheniya i psevdoizotopiya”, DAN SSSR, 169:6 (1966), 262–265
[15] L. V. Keldysh, “Topologicheskie vlozheniya v mnogoobrazie i psevdoizotopiya”, Matem. ob., 71(113) (1966), 433–453 | Zbl
[16] L. V. Keldysh, “Topologicheskie vlozheniya $E^3$ prostykh dug i zamknutykh konturov”, DAN SSSR, 185:3 (1969), 513–516 | Zbl