Imbedding of locally unknotted one-dimensional manifolds in~$E^3$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 267-287
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that each locally unknotted simple arc in three-dimensional euclidean space $E^3$ lies on a disc $D\subset E^3$, whence it follows that there exists a pseudo-isotopy of the space $E^3$ which carries a line segment into the locally unknotted simple arc.
Bibliography: 16 titles.
			
            
            
            
          
        
      @article{SM_1970_10_2_a7,
     author = {Lyudmila Keldysh},
     title = {Imbedding of locally unknotted one-dimensional manifolds in~$E^3$},
     journal = {Sbornik. Mathematics},
     pages = {267--287},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/}
}
                      
                      
                    Lyudmila Keldysh. Imbedding of locally unknotted one-dimensional manifolds in~$E^3$. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 267-287. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/
