Imbedding of locally unknotted one-dimensional manifolds in $E^3$
Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 267-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that each locally unknotted simple arc in three-dimensional euclidean space $E^3$ lies on a disc $D\subset E^3$, whence it follows that there exists a pseudo-isotopy of the space $E^3$ which carries a line segment into the locally unknotted simple arc. Bibliography: 16 titles.
@article{SM_1970_10_2_a7,
     author = {Lyudmila Keldysh},
     title = {Imbedding of locally unknotted one-dimensional manifolds in~$E^3$},
     journal = {Sbornik. Mathematics},
     pages = {267--287},
     year = {1970},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/}
}
TY  - JOUR
AU  - Lyudmila Keldysh
TI  - Imbedding of locally unknotted one-dimensional manifolds in $E^3$
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 267
EP  - 287
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/
LA  - en
ID  - SM_1970_10_2_a7
ER  - 
%0 Journal Article
%A Lyudmila Keldysh
%T Imbedding of locally unknotted one-dimensional manifolds in $E^3$
%J Sbornik. Mathematics
%D 1970
%P 267-287
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/
%G en
%F SM_1970_10_2_a7
Lyudmila Keldysh. Imbedding of locally unknotted one-dimensional manifolds in $E^3$. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 267-287. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a7/

[1] E. Artin, R. H. Fox, “Some wild cells and spheres in three-dimensional space”, Ann. Math., 49 (1948), 979–990 | DOI | MR | Zbl

[2] R. H. Bing, “Approximating surfaces with polyhedral ones”, Ann. Math., 65 (1957), 456–483 | DOI | MR | Zbl

[3] R. H. Bing, “Each disk in $E^3$ is pierced by a tame arc”, Amer. J. Math., 84 (1962), 591–599 | DOI | MR | Zbl

[4] R. H. Bing, “Each disk in $E^3$ contains a tame arc”, Amer. J. Math., 84 (1962), 583–590 | DOI | MR | Zbl

[5] R. H. Bing, “Locally tame sets are tame”, Ann. Math., 59 (1954), 145–158 | DOI | MR | Zbl

[6] R. H. Bing, “Pusching a $2$-sphere into its complement”, Michig. Math. J., 11 (1964), 33–45 | DOI | MR | Zbl

[7] R. H. Bing, “Improving the side approximation theorem”, Trans. Amer. Math. Soc., 116:4 (1965), 511–535 | DOI | MR

[8] R. F. Craggs, Small anibient isotopies of a $3$-manifold which transforme one embedding of a polyhedra into another, Thesis, Univ. Wisconsin, 1966 | Zbl

[9] P. H. Doyle, “Unions of cell pairs in $E^3$”, Pacific J. Math., 10:2 (1960), 521–524 | MR | Zbl

[10] O. G. Harrold, H. G. Griffith, E. E. Posey, “A characterization of tame curves in $3$-space”, Trans. Amer. Math. Soc., 79 (1955), 12–35 | DOI | MR

[11] J. M. Kister, “Isotopies in $3$-manifolds”, Trans. Amer. Math. Soc., 97:2 (1960), 213–224 | DOI | MR | Zbl

[12] I. Martin, “Tame arcs on disks”, Proc Amer. Math. Soc., 16:1 (1965), 131–133 | DOI | MR | Zbl

[13] E. E. Moise, “Affine structure in $3$-manifolds. VIII”, Ann. Math., 59 (1954), 159–170 | DOI | MR | Zbl

[14] L. V. Keldysh, “Topologicheskie vlozheniya i psevdoizotopiya”, DAN SSSR, 169:6 (1966), 262–265

[15] L. V. Keldysh, “Topologicheskie vlozheniya v mnogoobrazie i psevdoizotopiya”, Matem. ob., 71(113) (1966), 433–453 | Zbl

[16] L. V. Keldysh, “Topologicheskie vlozheniya $E^3$ prostykh dug i zamknutykh konturov”, DAN SSSR, 185:3 (1969), 513–516 | Zbl