Certain integral estimates for three-dimensional PM manifolds
Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 245-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we consider three-dimensional PM manifolds with positive curvature which are homeomorphic to a ball and have convex boundary. For these PM manifolds there is defined in a natural way the radius $r$ of the inscribed sphere and the integral mean curvature $H$ of the boundary. The new results consist of a proof of the estimates $$ V\geqslant\frac13Sr,\quad r\leqslant\frac SH,\quad D<\frac{2S}H+d,\quad V\leqslant Sr,\quad V\leqslant\frac{S^2}H, $$ where $V$ is the volume of the PM manifold, $D$ is the diameter, $S$ is the area of the boundary and $d$ is the intrinsic diameter of the boundary. Incidentally, properties of geodesics and the construction of their boundaries are investigated. The results obtained are completely analogous to the two-dimensional case. In particular, a construction is investigated similar to the special case of cutting out lunes from a two-dimensional PM manifold: it is shown that the union of the geodesics joining an interior point of the PM manifold to a point on the boundary form a finite collection of tetrahedra which are glued together into a “three-dimensional cone” after cutting out from the PM manifold the “remaining material”. Figures: 11. Bibliography: 9 titles.
@article{SM_1970_10_2_a6,
     author = {B. V. Dekster},
     title = {Certain integral estimates for three-dimensional {PM} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {245--265},
     year = {1970},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a6/}
}
TY  - JOUR
AU  - B. V. Dekster
TI  - Certain integral estimates for three-dimensional PM manifolds
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 245
EP  - 265
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_2_a6/
LA  - en
ID  - SM_1970_10_2_a6
ER  - 
%0 Journal Article
%A B. V. Dekster
%T Certain integral estimates for three-dimensional PM manifolds
%J Sbornik. Mathematics
%D 1970
%P 245-265
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_10_2_a6/
%G en
%F SM_1970_10_2_a6
B. V. Dekster. Certain integral estimates for three-dimensional PM manifolds. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 245-265. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a6/

[1] A. D. Aleksandrov, V. A. Zalgaller, Dvumernye mnogoobraziya ogranichennoi krivizny, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 63, 1962 | MR | Zbl

[2] A. D. Aleksandrov, V. A. Zalgaller (red.), Dvumernye mnogoobraziya ogranichennoi krivizny. Ch. II, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 76, 1965 | MR | Zbl

[3] Yu. A. Volkov, “Suschestvovanie vypuklogo mnogogrannika s dannoi razvertkoi”, Vestnik LGU, 19:4 (1960), 75–86 | Zbl

[4] Yu. A. Volkov, Suschestvovanie mnogogrannika s dannoi razvertkoi, Dissertatsiya, LGU, 1955

[5] A. D. Aleksandrov, Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhizdat, Moskva, 1948

[6] R. Bishop, R. Krittenden, Geometriya mnogoobrazii, Mir, Moskva, 1967 | MR | Zbl

[7] A. D. Milka, “O vnutrennei metrike vypuklykh giperpoverkhnostei”, Ukr. geom. sb., 1966, no. 2, 59–69 | MR | Zbl

[8] E. Kartan, Geometriya rimanovykh prostranstv, ONTI, Moskva, 1936

[9] G. F. Voronoi, Sobranie sochinenii, t. II, AN USSR, Kiev, 1952, 239–368