First order quasilinear equations in several independent variables
Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 217-243

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct a theory of generalized solutions in the large of Cauchy's problem for the equations $$ u_t+\sum_{i=1}^n\frac d{dx_i}\varphi_i(t,x,u)+\psi(t,x,u)=0 $$ in the class of bounded measurable functions. We define the generalized solution and prove existence, uniqueness and stability theorems for this solution. To prove the existence theorem we apply the “vanishing viscosity method”; in this connection, we first study Cauchy's problem for the corresponding parabolic equation, and we derive a priori estimates of the modulus of continuity in $L_1$ of the solution of this problem which do not depend on small viscosity. Bibliography: 22 titles.
@article{SM_1970_10_2_a5,
     author = {S. N. Kruzhkov},
     title = {First order quasilinear equations in several independent variables},
     journal = {Sbornik. Mathematics},
     pages = {217--243},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a5/}
}
TY  - JOUR
AU  - S. N. Kruzhkov
TI  - First order quasilinear equations in several independent variables
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 217
EP  - 243
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_2_a5/
LA  - en
ID  - SM_1970_10_2_a5
ER  - 
%0 Journal Article
%A S. N. Kruzhkov
%T First order quasilinear equations in several independent variables
%J Sbornik. Mathematics
%D 1970
%P 217-243
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_2_a5/
%G en
%F SM_1970_10_2_a5
S. N. Kruzhkov. First order quasilinear equations in several independent variables. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 217-243. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a5/