On~means and the Laplacian of functions on Hilbert space
Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 181-196

Voir la notice de l'article provenant de la source Math-Net.Ru

In his book Problemes concrets d'analyse fonctionnelle, Paul Levy introduced the concept of the mean $M(f,a,\rho)$ of the function $f$ on Hilbert space over the ball of radius $\rho$ with center at the point $a$, and investigated the properties of the Laplacian $$ Lf(a)=\lim_{\rho\to0}\frac{M(f,a,\rho)-f(a)}{\rho^2}, $$ but he did not determine which functions have means. Moreover, the mean $M(f,a,\rho)$ and the Laplacian $Lf(a)$ are not invariant, in general, under rotation about the point $a$. In the present paper we give a class of functions with invariant means on Hilbert space. An example of such a class is the set of functions $f(x)$ for which $f(x)=\gamma(x)I+T(x)$, where the function $\gamma(x)$ is uniformly continuous and has invariant means, $I$ is the identity operator, and $T(x)$ is a symmetric, completely continuous operator whose eigenvalues, arranged in decreasing order of absolute value $\lambda_j(x)$, have the property that $\frac1n\sum_{i=1}^n\lambda_i(x)\to0$ uniformly in $x$ (§ 3). The invariant mean of such a function exists and is given by the formula $$ M(f,x,r)=f(x)+\int_0^r\rho M(\gamma,x,\rho)\,d\rho, $$ and its Laplacian is $Lf(a)=\frac{\gamma(a)}2$. In § 4 we consider the Dirichlet problem and the Poisson problem for the ball and give sufficient conditions for the solution to be expressed by the Levy formulas. Bibliography: 7 titles.
@article{SM_1970_10_2_a3,
     author = {I. Ya. Dorfman},
     title = {On~means and the {Laplacian} of functions on {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {181--196},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a3/}
}
TY  - JOUR
AU  - I. Ya. Dorfman
TI  - On~means and the Laplacian of functions on Hilbert space
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 181
EP  - 196
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_2_a3/
LA  - en
ID  - SM_1970_10_2_a3
ER  - 
%0 Journal Article
%A I. Ya. Dorfman
%T On~means and the Laplacian of functions on Hilbert space
%J Sbornik. Mathematics
%D 1970
%P 181-196
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_2_a3/
%G en
%F SM_1970_10_2_a3
I. Ya. Dorfman. On~means and the Laplacian of functions on Hilbert space. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 181-196. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a3/