Integral relations for the Whittaker functions and the representations of the three-dimensional Lorentz group
Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 173-179
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct elements of the matrix which connects different bases for class I representations of the group $SO(2,1)$. These matrix elements are expressed in terms of Whittaker functions. In this way integral relations are obtained for these and orhte special functions. Bibliography: 5 titles.
@article{SM_1970_10_2_a2,
author = {N. Ya. Vilenkin and M. A. Shleinikova},
title = {Integral relations for the {Whittaker} functions and the representations of the three-dimensional {Lorentz} group},
journal = {Sbornik. Mathematics},
pages = {173--179},
year = {1970},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a2/}
}
TY - JOUR AU - N. Ya. Vilenkin AU - M. A. Shleinikova TI - Integral relations for the Whittaker functions and the representations of the three-dimensional Lorentz group JO - Sbornik. Mathematics PY - 1970 SP - 173 EP - 179 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1970_10_2_a2/ LA - en ID - SM_1970_10_2_a2 ER -
%0 Journal Article %A N. Ya. Vilenkin %A M. A. Shleinikova %T Integral relations for the Whittaker functions and the representations of the three-dimensional Lorentz group %J Sbornik. Mathematics %D 1970 %P 173-179 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/SM_1970_10_2_a2/ %G en %F SM_1970_10_2_a2
N. Ya. Vilenkin; M. A. Shleinikova. Integral relations for the Whittaker functions and the representations of the three-dimensional Lorentz group. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a2/
[1] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, Moskva, 1965 | MR
[2] N. Ya. Vilenkin, “Kontinualnye teoremy slozheniya dlya gipergeometricheskoi funktsii”, Matem. cb., 65(107) (1964), 28–46 | MR | Zbl
[3] Akio Orihara, “On some integral formulas containing Bessel functions”, Publ. Research Inst. Math. Sciences, I (1965), 55–66 | MR
[4] Paul J. Sally, Jr., “Analytic continuation of the irreducible unitary representations of the universal covering group of $SL(2,R)$”, Memoirs Amer. Math. Soc., 1967, no. 69 | MR
[5] F. Oberhettinger, Tabellen zur Fourier transformation, Springer-Verlag, 1957 | MR | Zbl