Invariant algebras on compact groups
Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 165-172

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is a description of homogeneous (i.e. invariant relative to left and right shifts) algebras with uniform convergence on a compact group. As a corollary we obtain a generalization of a theorem of Rider: let the real annihilater $A^\perp$ of a homogeneous antisymmetric algebra $A$ be separable in the topology of the definite norm in the conjugate space. Then the connected component of the identity $G_0$ of the group $G$ is commutative and $\dim A^\perp\geq{\operatorname{card}}(G/G_0)$. Rider proved that if $A^\perp=\{0\}$, then $G$ is commutative and connected. Bibliography: 3 titles.
@article{SM_1970_10_2_a1,
     author = {A. L. Rozenberg},
     title = {Invariant algebras on compact groups},
     journal = {Sbornik. Mathematics},
     pages = {165--172},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a1/}
}
TY  - JOUR
AU  - A. L. Rozenberg
TI  - Invariant algebras on compact groups
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 165
EP  - 172
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_2_a1/
LA  - en
ID  - SM_1970_10_2_a1
ER  - 
%0 Journal Article
%A A. L. Rozenberg
%T Invariant algebras on compact groups
%J Sbornik. Mathematics
%D 1970
%P 165-172
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_2_a1/
%G en
%F SM_1970_10_2_a1
A. L. Rozenberg. Invariant algebras on compact groups. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 165-172. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a1/