Asymptotic behavior of the eigenvalues of an anharmonic oscillator
Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 151-163
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the properties of the spectrum of the boundary-value problem
$$
\varphi''+[\lambda-x^2-V(x)]\varphi=0,\quad-\infty\infty.
$$
Let $\lambda_k$ be the points of the spectrum of this problem, arranged in order of increasing absolute value. Our main result is
Theorem. {\it Let $V(x)$ satisfy the conditions
$$
|V(x)|\leqslant M,\quad|x|\leqslant L;\qquad|V(x)|\leqslant\frac M{|x|},\quad|x|>L.
$$
Then for any $\varepsilon>0$
$$
|\lambda_k-2k-1|=o(k^{-1/2+\varepsilon})\ \text{for}\ k\to\infty.
$$}
Bibliography: 2 titles.
@article{SM_1970_10_2_a0,
author = {N. M. Kostenko},
title = {Asymptotic behavior of the eigenvalues of an anharmonic oscillator},
journal = {Sbornik. Mathematics},
pages = {151--163},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_10_2_a0/}
}
N. M. Kostenko. Asymptotic behavior of the eigenvalues of an anharmonic oscillator. Sbornik. Mathematics, Tome 10 (1970) no. 2, pp. 151-163. http://geodesic.mathdoc.fr/item/SM_1970_10_2_a0/