On~a~conjecture of Samuel
Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 127-137

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct examples disproving Samuel's conjecture stating that the ring $A[[T]]$ is factorial for a complete factorial local ring $A$. We also prove a theorem asserting (under some restrictions) that the ring $A[[T]]$ is factorial for a “'geometrically” factorial ring $A$. Bibliography: 16 titles.
@article{SM_1970_10_1_a8,
     author = {V. I. Danilov},
     title = {On~a~conjecture of {Samuel}},
     journal = {Sbornik. Mathematics},
     pages = {127--137},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/}
}
TY  - JOUR
AU  - V. I. Danilov
TI  - On~a~conjecture of Samuel
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 127
EP  - 137
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/
LA  - en
ID  - SM_1970_10_1_a8
ER  - 
%0 Journal Article
%A V. I. Danilov
%T On~a~conjecture of Samuel
%J Sbornik. Mathematics
%D 1970
%P 127-137
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/
%G en
%F SM_1970_10_1_a8
V. I. Danilov. On~a~conjecture of Samuel. Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/