On a conjecture of Samuel
Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 127-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct examples disproving Samuel's conjecture stating that the ring $A[[T]]$ is factorial for a complete factorial local ring $A$. We also prove a theorem asserting (under some restrictions) that the ring $A[[T]]$ is factorial for a “'geometrically” factorial ring $A$. Bibliography: 16 titles.
@article{SM_1970_10_1_a8,
     author = {V. I. Danilov},
     title = {On~a~conjecture of {Samuel}},
     journal = {Sbornik. Mathematics},
     pages = {127--137},
     year = {1970},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/}
}
TY  - JOUR
AU  - V. I. Danilov
TI  - On a conjecture of Samuel
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 127
EP  - 137
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/
LA  - en
ID  - SM_1970_10_1_a8
ER  - 
%0 Journal Article
%A V. I. Danilov
%T On a conjecture of Samuel
%J Sbornik. Mathematics
%D 1970
%P 127-137
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/
%G en
%F SM_1970_10_1_a8
V. I. Danilov. On a conjecture of Samuel. Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/

[1] A. Grothendieck, J. Dieudonne, “Elements de Geometrie algebriique”, Publ. Math., Paris, no. 8, 11, 20, 24, 28, 32

[2] P. Samuel, “On unique factorization domains”, Illinois J. Math., 5 (1961), 1–47 | MR

[3] G. Scheja, “Einige Beispiele factorieller localer Ringe”, Math. Ann., 172:2 (1967), 124–134 | DOI | MR | Zbl

[4] P. Salmon, “Su un plloblema pioista da P. Samuel”, Rend. dell Aocad. dei Lineei, serie 8, 40:5 (1966), 801–803 | MR | Zbl

[5] A. Grothendieck, Semdnaire de Geometrie algebrique, IHES, Bures-sur-Ivette, 1902

[6] V. I. Danilov, “Gruppa klassov idealov popolnennogo koltsa”, Matem. sb., 77(119) (1968), 533–541 | MR | Zbl

[7] I. R. Shafarevich, “Gruppa glavnykh odnorodnykh algebraicheskikh mnogoobrazii”, DAN SSSR, 124:1 (1959), 42–44

[8] S. Lang, J. Tate, “Principal homogeneous spaces over Abelian varieties”, Amer. J. Math., 80:3 (1968), 659–685 | DOI | MR

[9] E. S. Selmer, “The diophantine equation $az^3+by^3+cz^3=0$”, Acta Math., 85:4 (1961), 203–362 | MR

[10] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, IL, Moskva, 1963

[11] X. Khironaka, “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6

[12] S. Abhyankar, On the problem of resolution of singularities, Trudy mezhdunar. kongressa matematikov (Moskva, 1966), Mir, Moskva, 1968 | MR

[13] N. Bourbaki, Algebre commutative, (Chap. I, II, VII), Hermann, Paris

[14] A. Grothendieck, Fondement de la geometrie algebrique (Extraits du Seminaire Bourbaki, 1957–1962), Secretariat Maithematique, Paris | MR | Zbl

[15] J. P. Murre, “On conitriavariant functor from the category of preschemes over field into the category of abelian groups”, Publ. Math. Paris, 1964, no. 23 | MR

[16] F. Oort, “Sur le scheme de Picard”, Bull. Soc. Math. France, 90 (1962), 1–114 | MR

[17] A. Grotendik, O nekotorykh voprosakh gomologicheskoi algebry, IL 1961, Moskva