On~a~conjecture of Samuel
Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 127-137
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct examples disproving Samuel's conjecture stating that the ring $A[[T]]$ is factorial for a complete factorial local ring $A$. We also prove a theorem asserting (under some restrictions) that the ring $A[[T]]$ is factorial for a “'geometrically” factorial ring $A$.
Bibliography: 16 titles.
@article{SM_1970_10_1_a8,
author = {V. I. Danilov},
title = {On~a~conjecture of {Samuel}},
journal = {Sbornik. Mathematics},
pages = {127--137},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/}
}
V. I. Danilov. On~a~conjecture of Samuel. Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/SM_1970_10_1_a8/