Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics
Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 103-126

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of the work are established imbedding theorems pertaining to arbitrary classes of functions of a single variable $\varphi(L)$, $L\varphi(L)$, $H_p^{\omega(\delta)}$ and $L^\nu\ln^\beta(1+L)$. The second part contains estimates for best approximations (moduli of continuity) in different metrics. It is shown that in certain cases these estimates cannot be strengthened. Bibliography: 14 titles.
@article{SM_1970_10_1_a7,
     author = {P. L. Ul'yanov},
     title = {Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics},
     journal = {Sbornik. Mathematics},
     pages = {103--126},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_1_a7/}
}
TY  - JOUR
AU  - P. L. Ul'yanov
TI  - Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 103
EP  - 126
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_1_a7/
LA  - en
ID  - SM_1970_10_1_a7
ER  - 
%0 Journal Article
%A P. L. Ul'yanov
%T Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics
%J Sbornik. Mathematics
%D 1970
%P 103-126
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_1_a7/
%G en
%F SM_1970_10_1_a7
P. L. Ul'yanov. Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics. Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 103-126. http://geodesic.mathdoc.fr/item/SM_1970_10_1_a7/