Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 103-126
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the first part of the work are established imbedding theorems pertaining to arbitrary classes of functions of a single variable $\varphi(L)$, $L\varphi(L)$, $H_p^{\omega(\delta)}$ and $L^\nu\ln^\beta(1+L)$.
The second part contains estimates for best approximations (moduli of continuity) in different metrics. It is shown that in certain cases these estimates cannot be strengthened.
Bibliography: 14 titles.
			
            
            
            
          
        
      @article{SM_1970_10_1_a7,
     author = {P. L. Ul'yanov},
     title = {Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics},
     journal = {Sbornik. Mathematics},
     pages = {103--126},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_1_a7/}
}
                      
                      
                    TY - JOUR AU - P. L. Ul'yanov TI - Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics JO - Sbornik. Mathematics PY - 1970 SP - 103 EP - 126 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_10_1_a7/ LA - en ID - SM_1970_10_1_a7 ER -
P. L. Ul'yanov. Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics. Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 103-126. http://geodesic.mathdoc.fr/item/SM_1970_10_1_a7/
