Description of the spaces $L_p^r(R^n)$ in terms of singular difference integrals
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 77-89
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This article gives a necessary and sufficient condition for a $p$-integrable function to have partial derivatives of specified orders which are $p$th power integrable over $R^n$. This condition is expressed using integrals of differences which in general converge conditionally in the $L_p$-norm. We also prove a Fubini theorem for these function spaces.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1970_10_1_a5,
     author = {P. I. Lizorkin},
     title = {Description of the spaces $L_p^r(R^n)$ in terms of singular difference integrals},
     journal = {Sbornik. Mathematics},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_1_a5/}
}
                      
                      
                    P. I. Lizorkin. Description of the spaces $L_p^r(R^n)$ in terms of singular difference integrals. Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 77-89. http://geodesic.mathdoc.fr/item/SM_1970_10_1_a5/
