The semigroup of reflective subcategories
Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 61-75

Voir la notice de l'article provenant de la source Math-Net.Ru

An associative product is defined on the class of reflective subcategories of certain categories; we assume that the subcategories are closed under subobjects. The “semigroup”' obtained contains, in particular, the semigroup of varieties. Dually, one can define the “semigroup”' of coreflective subcategories with the same rule of multiplication. Bibliography: 16 titles.
@article{SM_1970_10_1_a4,
     author = {M. Sh. Tsalenko},
     title = {The semigroup of reflective subcategories},
     journal = {Sbornik. Mathematics},
     pages = {61--75},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_1_a4/}
}
TY  - JOUR
AU  - M. Sh. Tsalenko
TI  - The semigroup of reflective subcategories
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 61
EP  - 75
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_1_a4/
LA  - en
ID  - SM_1970_10_1_a4
ER  - 
%0 Journal Article
%A M. Sh. Tsalenko
%T The semigroup of reflective subcategories
%J Sbornik. Mathematics
%D 1970
%P 61-75
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_1_a4/
%G en
%F SM_1970_10_1_a4
M. Sh. Tsalenko. The semigroup of reflective subcategories. Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 61-75. http://geodesic.mathdoc.fr/item/SM_1970_10_1_a4/