On equations of minimax type in the theory of elliptic and parabolic equations in the plane
Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 1-19

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence and uniqueness of the solution in Sobolev spaces $W_p^2$ ($W_p^{2,1}$) is proved for the first boundary value problem for elliptic (parabolic) equations of the form $$ \lambda u-\inf_{\alpha\in\mathfrak U}\sup_{\beta\in\mathfrak B(\alpha)}(L_{\alpha\beta}u+f_{\alpha\beta})=f. $$ Here $L_{\alpha\beta}u=a_{ij}^{\alpha\beta}D_{ij}u+b_i^{\alpha\beta}u_{x_i}-c^{\alpha\beta}u$ and $D_{ij}u=u_{x_ix_j}$ in the elliptic case, $D_{ij}u=u_{x_ix_j}-\delta_{ij}u_t$ in the parabolic case. The subscript $p$ takes any values close to two. Bibliography: 10 titles.
@article{SM_1970_10_1_a0,
     author = {N. V. Krylov},
     title = {On equations of minimax type in the theory of elliptic and parabolic equations in the plane},
     journal = {Sbornik. Mathematics},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_1_a0/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On equations of minimax type in the theory of elliptic and parabolic equations in the plane
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 1
EP  - 19
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_1_a0/
LA  - en
ID  - SM_1970_10_1_a0
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On equations of minimax type in the theory of elliptic and parabolic equations in the plane
%J Sbornik. Mathematics
%D 1970
%P 1-19
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_1_a0/
%G en
%F SM_1970_10_1_a0
N. V. Krylov. On equations of minimax type in the theory of elliptic and parabolic equations in the plane. Sbornik. Mathematics, Tome 10 (1970) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/SM_1970_10_1_a0/