Functors between structured categories
Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 497-513 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The pair $(\mathfrak K,P)$ consisting of a category $\mathfrak K$ and a univalent functor $P$ from $\mathfrak K$ to a category $\mathfrak U$ is called a structured category. If $(\mathfrak K_1, P_1)$ and $(\mathfrak K_2,P_2)$ are two such pairs, then a functor $F\colon\mathfrak K_1\to\mathfrak K_2$ is structured if $FP_2=P_1$. Conditions are determined under which all structured functors have a left adjoint functor. Bibliography: 15 titles.
@article{SM_1969_9_4_a5,
     author = {M. Sh. Tsalenko},
     title = {Functors between structured categories},
     journal = {Sbornik. Mathematics},
     pages = {497--513},
     year = {1969},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_4_a5/}
}
TY  - JOUR
AU  - M. Sh. Tsalenko
TI  - Functors between structured categories
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 497
EP  - 513
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_4_a5/
LA  - en
ID  - SM_1969_9_4_a5
ER  - 
%0 Journal Article
%A M. Sh. Tsalenko
%T Functors between structured categories
%J Sbornik. Mathematics
%D 1969
%P 497-513
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1969_9_4_a5/
%G en
%F SM_1969_9_4_a5
M. Sh. Tsalenko. Functors between structured categories. Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 497-513. http://geodesic.mathdoc.fr/item/SM_1969_9_4_a5/

[1] N. Burbaki, Obschaya topologiya (osnovnye struktury), Fizmatgiz, M., 1958

[2] K. Drbohlav, “A categorical generalisation of a theorem of G. Birkboff on primitive classes of universal algebras”, Comment. Math. Univ. Carolinae, 6:1 (1965), 21–41 | MR | Zbl

[3] K. Drbohlav, “A note on epimorphisms in algebraic categories”, Comment. Math. Univ. Carolinae, 4:2 (1963), 81–85 | MR | Zbl

[4] J. R. Isbell, “Adequate subcategories”, Illinois J. Math., 4:4 (1960), 541–552 | MR | Zbl

[5] J. R. Isbell, “Subjects, adequacy, completeness and categories of algebras”, Rozprawy Mat., 36 (1964), 33 | MR | Zbl

[6] D. M. Kan, “Adjoint functors”, Trans. Amer. Math. Soc., 87 (1958), 294–329 ; Matematika, 3:2 (1959), 3–37 | DOI | MR | Zbl | MR

[7] A. G. Kurosh, A. X. Livshits, E. G. Shulgeifer, “Osnovy teorii kategorii”, Uspekhi matem. nauk, XV:6(96) (1960), 3–52 | MR

[8] F. W. Lawvere, “Functorial semantics of algebraic theories”, Proc. Nat. Acad. Sci. USA, 50:5 (1963), 869–872 | DOI | MR | Zbl

[9] A. I. Maltsev, “Opredelyayuschie sootnosheniya v kategoriyakh”, DAN SSSR, 119:6 (1958), 1095–1098

[10] J. M. Maranda, “Injective structures”, Trans. Amer. Math. Soc., 110:1 (1964), 98–135 | DOI | MR | Zbl

[11] J. M. Maranda, “Some remarks on limits in categories”, Canad. Math. Bull., 5:3 (1962), 133–146 | MR | Zbl

[12] W. Felscher, “Adjugierte Funktoren und primitive Klassen”, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl., 1965, no. 4, 447–509 | MR | Zbl

[13] M. Sh. Tsalenko, “Pravilnye ob'edineniya i spetsialnye podpryamye summy v kategoriyakh”, Matem. sb., 57(99) (1962), 75–94 | Zbl

[14] M. Sh. Tsalenko, E. G. Shulgeifer, “Kategorii”, Itogi nauki. Algebra. Topologiya. Geometriya. 1967, M., 1969, 9–57 | Zbl

[15] A. X. Livshits, M. Sh. Tsalenko, E. G. Shulgeifer, “Mnogoobraziya v kategoriyakh”, Matem. sb., 63(105) (1964), 554–581 | Zbl