Quotient spaces and multiplicity of a~base
Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 487-496
Voir la notice de l'article provenant de la source Math-Net.Ru
The basic results of the note are the following two theorems.
Theorem 1.1. Let $f\colon X\to Y$ be a biquotient $\tau$-mapping and let the space $X$ have a base whose multiplicity does not surpass $\tau$. Then the space $Y$ also has a base whose multiplicity does not surpass $\tau$.
\smallskip
Theorem 2.1. Let $f\colon X\to Y$ be a quotient $s$-mapping of a space $X$ with a pointwise-countable base on a $T_2$-space $Y$ of pointwise-countable type. Then the mapping $f$ is biquotient. References: 9 titles.
@article{SM_1969_9_4_a4,
author = {V. V. Filippov},
title = {Quotient spaces and multiplicity of a~base},
journal = {Sbornik. Mathematics},
pages = {487--496},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/}
}
V. V. Filippov. Quotient spaces and multiplicity of a~base. Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 487-496. http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/