Quotient spaces and multiplicity of a base
Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 487-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The basic results of the note are the following two theorems. Theorem 1.1. Let $f\colon X\to Y$ be a biquotient $\tau$-mapping and let the space $X$ have a base whose multiplicity does not surpass $\tau$. Then the space $Y$ also has a base whose multiplicity does not surpass $\tau$. \smallskip Theorem 2.1. Let $f\colon X\to Y$ be a quotient $s$-mapping of a space $X$ with a pointwise-countable base on a $T_2$-space $Y$ of pointwise-countable type. Then the mapping $f$ is biquotient. References: 9 titles.
@article{SM_1969_9_4_a4,
     author = {V. V. Filippov},
     title = {Quotient spaces and multiplicity of a~base},
     journal = {Sbornik. Mathematics},
     pages = {487--496},
     year = {1969},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/}
}
TY  - JOUR
AU  - V. V. Filippov
TI  - Quotient spaces and multiplicity of a base
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 487
EP  - 496
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/
LA  - en
ID  - SM_1969_9_4_a4
ER  - 
%0 Journal Article
%A V. V. Filippov
%T Quotient spaces and multiplicity of a base
%J Sbornik. Mathematics
%D 1969
%P 487-496
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/
%G en
%F SM_1969_9_4_a4
V. V. Filippov. Quotient spaces and multiplicity of a base. Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 487-496. http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/

[1] P. S. Aleksandrov, P. S. Uryson, “O kompaktnykh topologicheskikh prostranstvakh”, v kn.: P. S. Uryson, Trudy po topologii i drugim oblastyam matematiki, t. 2, Gostekhizdat, M., L., 1951 | MR

[2] A. S. Mischenko, “O prostranstvakh s tochechno-schetnoi bazoi”, DAN SSSR, 144:5 (1962), 985–988 | Zbl

[3] A. H. Stone, “Metrisabilily of decomposition spaces”, Proc. Amer. Math. Soc., 7 (1956), 690–700 | DOI | MR | Zbl

[4] V. V. Filippov, “O peristykh parakompaktakh”, DAN SSSR, 178:3 (1968), 555–558 | MR | Zbl

[5] V. V. Filippov, “O sokhranenii kratnosti bazy pri sovershennykh otobrazheniyakh”, DAN SSSR, 181:5 (1968), 1077–1079 | MR | Zbl

[6] V. V. Filippov, “O faktornykh $s$-otobrazheniyakh”, DAN SSSR, 181:6 (1968), 1343–1345 | MR | Zbl

[7] M. M. Choban, “O povedenii metrizuemosti pri faktornykh $s$-otobrazheniyakh”, DAN SSSR, 166:3 (1966), 562–565 | Zbl

[8] A. V. Arkhangelskii, “Ob odnom klasse prostranstv, soderzhaschem vse metricheskie i vse lokalno bikompaktnye prostranstva”, Matem. sb., 67(109) (1965), 89–134

[9] E. Michael, “Biquotien maps and cartesian products of quotien maps”, Ann. Inst. Fourier Grenoble, 18:2 (1968), 287–302 | MR | Zbl