Quotient spaces and multiplicity of a~base
Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 487-496

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic results of the note are the following two theorems. Theorem 1.1. Let $f\colon X\to Y$ be a biquotient $\tau$-mapping and let the space $X$ have a base whose multiplicity does not surpass $\tau$. Then the space $Y$ also has a base whose multiplicity does not surpass $\tau$. \smallskip Theorem 2.1. Let $f\colon X\to Y$ be a quotient $s$-mapping of a space $X$ with a pointwise-countable base on a $T_2$-space $Y$ of pointwise-countable type. Then the mapping $f$ is biquotient. References: 9 titles.
@article{SM_1969_9_4_a4,
     author = {V. V. Filippov},
     title = {Quotient spaces and multiplicity of a~base},
     journal = {Sbornik. Mathematics},
     pages = {487--496},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/}
}
TY  - JOUR
AU  - V. V. Filippov
TI  - Quotient spaces and multiplicity of a~base
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 487
EP  - 496
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/
LA  - en
ID  - SM_1969_9_4_a4
ER  - 
%0 Journal Article
%A V. V. Filippov
%T Quotient spaces and multiplicity of a~base
%J Sbornik. Mathematics
%D 1969
%P 487-496
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/
%G en
%F SM_1969_9_4_a4
V. V. Filippov. Quotient spaces and multiplicity of a~base. Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 487-496. http://geodesic.mathdoc.fr/item/SM_1969_9_4_a4/