On the behavior of solutions of elliptic equations of second order in the neighborhood of a~singular boundary point
Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 467-477

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of the solution of the linear elliptic equation \begin{equation} \label{1} \mathfrak Mu\equiv\sum_{i,\,k=1}^m a_{ik}(x)\frac{\partial^2u}{\partial x_i\partial x_k}+\sum_{i=1}^m b_i(x)\frac{\partial u}{\partial x_i}+c(x)u=0 \end{equation} with sufficiently smooth coefficients in a neighborhood of a singular boundary point is considered. Let $G$ be a bounded domain in $m$-space with boundary $\Gamma$. Let $x_0\in G$. For a nonnegative integer $n$ denote by $E_n$ the set of points in the complement of $G$ for which $$ 2^{-n}|x-x_0|\leqslant 2^{-(n-1)}. $$ The main result states that if the capacity $\gamma_n$ of the set $E_n$ satisfies the inequality $$ \gamma_n\leqslant\frac1{2^{n(k+m-2+\alpha)}}, $$ where $k$ is a nonnegative integer and $0\alpha1$, then the $k$th derivatives of the solution of (1) and the Hölder coefficients with exponents $\lambda\alpha$ of these derivatives are bounded constants which depend on $k$, $\alpha$, $\lambda$ and the constants of the elliptic equation and do not depend on the distance of $x_0$ from the boundary. Figure: 1. Bibliography: 7 titles.
@article{SM_1969_9_4_a2,
     author = {E. A. Mikheeva},
     title = {On the behavior of solutions of elliptic equations of second order in the neighborhood of a~singular boundary point},
     journal = {Sbornik. Mathematics},
     pages = {467--477},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_4_a2/}
}
TY  - JOUR
AU  - E. A. Mikheeva
TI  - On the behavior of solutions of elliptic equations of second order in the neighborhood of a~singular boundary point
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 467
EP  - 477
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_4_a2/
LA  - en
ID  - SM_1969_9_4_a2
ER  - 
%0 Journal Article
%A E. A. Mikheeva
%T On the behavior of solutions of elliptic equations of second order in the neighborhood of a~singular boundary point
%J Sbornik. Mathematics
%D 1969
%P 467-477
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_9_4_a2/
%G en
%F SM_1969_9_4_a2
E. A. Mikheeva. On the behavior of solutions of elliptic equations of second order in the neighborhood of a~singular boundary point. Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 467-477. http://geodesic.mathdoc.fr/item/SM_1969_9_4_a2/