On the behavior of solutions of elliptic equations of second order in the neighborhood of a singular boundary point
Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 467-477 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behavior of the solution of the linear elliptic equation \begin{equation} \label{1} \mathfrak Mu\equiv\sum_{i,\,k=1}^m a_{ik}(x)\frac{\partial^2u}{\partial x_i\partial x_k}+\sum_{i=1}^m b_i(x)\frac{\partial u}{\partial x_i}+c(x)u=0 \end{equation} with sufficiently smooth coefficients in a neighborhood of a singular boundary point is considered. Let $G$ be a bounded domain in $m$-space with boundary $\Gamma$. Let $x_0\in G$. For a nonnegative integer $n$ denote by $E_n$ the set of points in the complement of $G$ for which $$ 2^{-n}<|x-x_0|\leqslant 2^{-(n-1)}. $$ The main result states that if the capacity $\gamma_n$ of the set $E_n$ satisfies the inequality $$ \gamma_n\leqslant\frac1{2^{n(k+m-2+\alpha)}}, $$ where $k$ is a nonnegative integer and $0<\alpha<1$, then the $k$th derivatives of the solution of (1) and the Hölder coefficients with exponents $\lambda<\alpha$ of these derivatives are bounded constants which depend on $k$, $\alpha$, $\lambda$ and the constants of the elliptic equation and do not depend on the distance of $x_0$ from the boundary. Figure: 1. Bibliography: 7 titles.
@article{SM_1969_9_4_a2,
     author = {E. A. Mikheeva},
     title = {On the behavior of solutions of elliptic equations of second order in the neighborhood of a~singular boundary point},
     journal = {Sbornik. Mathematics},
     pages = {467--477},
     year = {1969},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_4_a2/}
}
TY  - JOUR
AU  - E. A. Mikheeva
TI  - On the behavior of solutions of elliptic equations of second order in the neighborhood of a singular boundary point
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 467
EP  - 477
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_4_a2/
LA  - en
ID  - SM_1969_9_4_a2
ER  - 
%0 Journal Article
%A E. A. Mikheeva
%T On the behavior of solutions of elliptic equations of second order in the neighborhood of a singular boundary point
%J Sbornik. Mathematics
%D 1969
%P 467-477
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1969_9_4_a2/
%G en
%F SM_1969_9_4_a2
E. A. Mikheeva. On the behavior of solutions of elliptic equations of second order in the neighborhood of a singular boundary point. Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 467-477. http://geodesic.mathdoc.fr/item/SM_1969_9_4_a2/

[1] O. A. Oleinik, “O zadache Dirikhle dlya uravnenii ellipticheskogo tipa”, Matem. sb., 24(66) (1949), 3–14 | MR | Zbl

[2] R. M. Hervé, “Recherches axiomatiques sur la théorie des fonctions surharrnoniques et du ipotentiel”, Ann. Inst. Fourier, 12 (1962), 415–571 | MR | Zbl

[3] H. V. Krylov, “O pervoi kraevoi zadache dlya ellipticheskikh uravnenii vtorogo poryadka”, Diff. uravneniya, 3:2 (1969), 315–326 | MR

[4] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[5] K. Miranda, Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957

[6] V. G. Mazya, “O regulyarnosti na granitse reshenii ellipticheskikh uravnenii i konformnykh otobrazhenii”, DAN SSSR, 152:6 (1963), 1297–1299

[7] G. N. Blokhina, Teoremy tipa Fragmena–Lindelefa dlya lineinogo ellipticheskogo uravneniya vtorogo poryadka, Kand. dissertatsiya, M., 1965 | Zbl