Boundary value problems for elliptic equations degenerate on the boundary of a domain
Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 423-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the elliptic equation $Lu=f$ of order $2m$, degenerate on the boundary $\Gamma$ of a bounded domain $G$. In local coordinates $(x_1,\dots,x_n)$, introduced in a neighborhood $U(x_0)$ of the point $x_0\in\Gamma$ and in which $\Gamma\cap U(x_0)$ is given by $x_n=0$, the operator $$ L(x;x_n;D^\alpha)=\sum_{|\alpha|\leqslant m}\alpha_\alpha(x)x_n^{l_\alpha}D^\alpha, $$ where $l_\alpha=\max(0,q\alpha_n+q'\alpha'-qr)$, $q\geqslant1$, $q'\geqslant0$. For $x_n=0$ the operator $Lu$ degenerates into the quasi-elliptic operator $$ L_1u=\sum_{\frac rr'|\alpha'|+\alpha_n\leqslant r}\alpha_\alpha(x)D^\alpha\qquad(|\alpha'|\leqslant r'\quad(qr=q'r')). $$ In particular we study the case of transition, for $x_n=0$, of an elliptic operator into a parabolic operator. Figures: 3. Bibliography: 19 titles.
@article{SM_1969_9_4_a0,
     author = {M. I. Vishik and V. V. Grushin},
     title = {Boundary value problems for elliptic equations degenerate on the boundary of a~domain},
     journal = {Sbornik. Mathematics},
     pages = {423--454},
     year = {1969},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_4_a0/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Grushin
TI  - Boundary value problems for elliptic equations degenerate on the boundary of a domain
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 423
EP  - 454
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_4_a0/
LA  - en
ID  - SM_1969_9_4_a0
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Grushin
%T Boundary value problems for elliptic equations degenerate on the boundary of a domain
%J Sbornik. Mathematics
%D 1969
%P 423-454
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1969_9_4_a0/
%G en
%F SM_1969_9_4_a0
M. I. Vishik; V. V. Grushin. Boundary value problems for elliptic equations degenerate on the boundary of a domain. Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 423-454. http://geodesic.mathdoc.fr/item/SM_1969_9_4_a0/

[1] V. P. Mikhailov, “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Trudy matem. in-ta im. V. A. Steklova AN SSSR, 91, 1967, 59–80

[2] J. Friberg, “Multi-quasielliptic polinomials”, Ann. Scuola Norm. Super. Pisa, 21:2 (1967), 239–260 | MR | Zbl

[3] Ya. B. Lopatinskii, “Ob odnom sposobe privedeniya granichnykh zadach dlya sistemy differentsialnykh uravnenii ellipticheskogo tipa k regulyarnym integralnym uravneniyam”, Ukr. matem. zh., 5:2 (1953), 123–151 | MR | Zbl

[4] M. I. Vishik, V. V. Grushin, “Ob odnom klasse vyrozhdayuschikhsya ellipticheskikh uravnenii vysshikh poryadkov”, Matem. sb., 79(121) (1969), 3–36 | Zbl

[5] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5(77) (1957), 3–122 | MR | Zbl

[6] V. P. Glushko, “Koertsitivnost v $L_2$ obschikh granichnykh zadach dlya vyrozhdayuschegosya ellipticheskogo uravneniya vtorogo poryadka”, Funkts. analiz i ego prilozheniya, 2:3 (1968), 87–88 | MR | Zbl

[7] I. A. Kipriyanov, “O kraevykh zadachakh dlya uravnenii v chastnykh proizvodnykh s differentsialnym operatorom Besselya”, DAN SSSR, 158:2 (1964), 275–278 | Zbl

[8] A. V. Fursikov, “Ob odnom klasse vyrozhdayuschikhsya ellipticheskikh operatorov”, Matem. sb., 79(121) (1969), 381–404 | MR | Zbl

[9] G. Geymonat, P. Grisvard, “Problemi di Hmiti lineari ellittici negli spaci di Sobolev con peso”, Le Matematiche, 22:2 (1967), 212–249 | MR | Zbl

[10] O. A. Oleinik, “O lineinykh uravneniyakh vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Matem. sb., 69(111) (1966), 111–140 | MR | Zbl

[11] Dzh. Dzh. Kon, L. Nirenberg, “Nekoertsitivnye kraevye zadachi”, Psevdodifferentsialnye operatory, Mir, M., 1967, 88–165 | MR

[12] J. J. Kohn, L. Nirenberg, “Degenerate elliptic-parabolic equations of second order”, Comm. Pure Appl. Math., 20 (1967), 797–872 | DOI | MR | Zbl

[13] L. Khermander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[14] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, 19:3(117) (1964), 53–161 | Zbl

[15] L. R. Volevich, B. P. Paneyakh, “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, Uspekhi matem. nauk, 20:1(121) (1965), 3–74 | MR | Zbl

[16] I. Ts. Gokhberg, M. G. Krein, “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, Uspekhi matem. nauk, 12:2(74) (1957), 44–118 | MR

[17] M. I. Vishik, V. V. Grushin, “Ellipticheskie psevdodifferentsialnye operatory na zamknutom mnogoobrazii, vyrozhdayuschiesya na podmnogoobrazii”, DAN SSSR, 189:1 (1969) | MR | Zbl

[18] M. I. Vishik, G. I. Eskin, “Uravneniya v svertkakh v ogranichennoi oblasti”, Uspekhi matem. nauk, 20:3(129) (1965), 89–152 | MR | Zbl

[19] M. I. Vishik, G. I. Eskin, “Normalno razreshimye zadachi dlya ellipticheskikh sistem uravnenii v svertkakh”, Matem. sb., 74(116) (1967), 326–356 | Zbl