Boundary value problems for elliptic equations degenerate on the boundary of a~domain
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 423-454
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We investigate the elliptic equation $Lu=f$ of order $2m$, degenerate on the boundary $\Gamma$ of a bounded domain $G$. In local coordinates $(x_1,\dots,x_n)$, introduced in a neighborhood $U(x_0)$ of the point $x_0\in\Gamma$ and in which $\Gamma\cap U(x_0)$ is given by $x_n=0$, the operator
$$
L(x;x_n;D^\alpha)=\sum_{|\alpha|\leqslant m}\alpha_\alpha(x)x_n^{l_\alpha}D^\alpha,
$$
where $l_\alpha=\max(0,q\alpha_n+q'\alpha'-qr)$, $q\geqslant1$, $q'\geqslant0$. For $x_n=0$ the operator $Lu$ degenerates into the quasi-elliptic operator
$$
L_1u=\sum_{\frac rr'|\alpha'|+\alpha_n\leqslant r}\alpha_\alpha(x)D^\alpha\qquad(|\alpha'|\leqslant r'\quad(qr=q'r')).
$$ In particular we study the case of transition, for $x_n=0$, of an elliptic operator into a parabolic operator.
Figures: 3.
Bibliography: 19 titles.
			
            
            
            
          
        
      @article{SM_1969_9_4_a0,
     author = {M. I. Vishik and V. V. Grushin},
     title = {Boundary value problems for elliptic equations degenerate on the boundary of a~domain},
     journal = {Sbornik. Mathematics},
     pages = {423--454},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_4_a0/}
}
                      
                      
                    TY - JOUR AU - M. I. Vishik AU - V. V. Grushin TI - Boundary value problems for elliptic equations degenerate on the boundary of a~domain JO - Sbornik. Mathematics PY - 1969 SP - 423 EP - 454 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1969_9_4_a0/ LA - en ID - SM_1969_9_4_a0 ER -
M. I. Vishik; V. V. Grushin. Boundary value problems for elliptic equations degenerate on the boundary of a~domain. Sbornik. Mathematics, Tome 9 (1969) no. 4, pp. 423-454. http://geodesic.mathdoc.fr/item/SM_1969_9_4_a0/
