On~the representation of numbers by binary biquadratic forms
Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 415-422

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that if the rank of the equation $ax^4+bx^2y^2+cy^4=kz^2$ over the field $R(1)$ does not exceed unity, and if $k$ is not divisible by any fourth power and is relatively prime to the discriminant, then, provided that $\frac{(b^2-4ac)}{\max\{|a|,|c|\}}$ is sufficiently large relative to $k$, the equation $ax^4+bx^2y^2+cy^4=k$ does not have more than three positive integer solutions. Bibliography: 10 titles.
@article{SM_1969_9_3_a8,
     author = {V. A. Dem'yanenko},
     title = {On~the representation of numbers by binary biquadratic forms},
     journal = {Sbornik. Mathematics},
     pages = {415--422},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_3_a8/}
}
TY  - JOUR
AU  - V. A. Dem'yanenko
TI  - On~the representation of numbers by binary biquadratic forms
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 415
EP  - 422
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_3_a8/
LA  - en
ID  - SM_1969_9_3_a8
ER  - 
%0 Journal Article
%A V. A. Dem'yanenko
%T On~the representation of numbers by binary biquadratic forms
%J Sbornik. Mathematics
%D 1969
%P 415-422
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_9_3_a8/
%G en
%F SM_1969_9_3_a8
V. A. Dem'yanenko. On~the representation of numbers by binary biquadratic forms. Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 415-422. http://geodesic.mathdoc.fr/item/SM_1969_9_3_a8/