An example of eqations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ having a~countable number of limit cycles and arbitrarily large Petrovskii--Landis genus
Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 365-378
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we construct an open set $V$ in the space of coefficients $A_n$ of the equations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ such that on the solutions of an arbitrary equation $\alpha\in V$ there exist a countable number of homotopically distinct limit cycles. Also, for each natural number $N$ we construct an open set $V_N\subset A_n$ such that an arbitrary equation $\alpha\in V_N$ has a Petrovskii–Landis genus which exceeds $N$.
Bibliography: 9 titles.
@article{SM_1969_9_3_a5, author = {Yu. S. Ilyashenko}, title = {An example of eqations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ having a~countable number of limit cycles and arbitrarily large {Petrovskii--Landis} genus}, journal = {Sbornik. Mathematics}, pages = {365--378}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {1969}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SM_1969_9_3_a5/} }
TY - JOUR AU - Yu. S. Ilyashenko TI - An example of eqations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ having a~countable number of limit cycles and arbitrarily large Petrovskii--Landis genus JO - Sbornik. Mathematics PY - 1969 SP - 365 EP - 378 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1969_9_3_a5/ LA - en ID - SM_1969_9_3_a5 ER -
%0 Journal Article %A Yu. S. Ilyashenko %T An example of eqations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ having a~countable number of limit cycles and arbitrarily large Petrovskii--Landis genus %J Sbornik. Mathematics %D 1969 %P 365-378 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1969_9_3_a5/ %G en %F SM_1969_9_3_a5
Yu. S. Ilyashenko. An example of eqations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ having a~countable number of limit cycles and arbitrarily large Petrovskii--Landis genus. Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 365-378. http://geodesic.mathdoc.fr/item/SM_1969_9_3_a5/