@article{SM_1969_9_3_a5,
author = {Yu. S. Ilyashenko},
title = {An example of eqations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ having a~countable number of limit cycles and arbitrarily large {Petrovskii{\textendash}Landis} genus},
journal = {Sbornik. Mathematics},
pages = {365--378},
year = {1969},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1969_9_3_a5/}
}
TY - JOUR
AU - Yu. S. Ilyashenko
TI - An example of eqations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ having a countable number of limit cycles and arbitrarily large Petrovskii–Landis genus
JO - Sbornik. Mathematics
PY - 1969
SP - 365
EP - 378
VL - 9
IS - 3
UR - http://geodesic.mathdoc.fr/item/SM_1969_9_3_a5/
LA - en
ID - SM_1969_9_3_a5
ER -
%0 Journal Article
%A Yu. S. Ilyashenko
%T An example of eqations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ having a countable number of limit cycles and arbitrarily large Petrovskii–Landis genus
%J Sbornik. Mathematics
%D 1969
%P 365-378
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1969_9_3_a5/
%G en
%F SM_1969_9_3_a5
Yu. S. Ilyashenko. An example of eqations $\frac{dw}{dz}=\frac{P_n(z,w)}{Q_n(z,w)}$ having a countable number of limit cycles and arbitrarily large Petrovskii–Landis genus. Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 365-378. http://geodesic.mathdoc.fr/item/SM_1969_9_3_a5/
[1] I. G. Petrovskii, E. M. Landis, “O chisle predelnykh tsiklov uravneniya $\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, gde $P$ i $Q$ – mnogochleny vtoroi stepeni”, Matem. sb., 37(79):2 (1955), 209–250 | MR | Zbl
[2] Yu. S. Ilyashenko, “Vozniknovenie predelnykh tsiklov pri vozmuschenii uravneniya $\frac{dw}{dz}=-\frac{R_z}{R_w}$, gde $R(z,w)$ – mnogochlen”, Matem. sb., 78(120) (1969), 360–373
[3] B. A. Fuks, Vvedenie v teoriyu analiticheskikh funktsii mnogikh kompleksnykh peremennykh, Fizmatgiz, M., 1962 | MR
[4] A. B. Zhizhchenko, “O gruppakh gomologii algebraicheskikh mnogoobrazii”, Izv. AN SSSR, seriya matem., 25 (1961), 765–788 | Zbl
[5] Dzh. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960
[6] G. Stolzenberg, “Uniform approximation on smooth curves”, Acta Math., 115:3,4 (1966), 185–198 | DOI | MR | Zbl
[7] M. G. Khudai-Vepenov, “Ob odnom svoistve reshenii odnogo differentsialnogo uravneniya”, Matem. sb., 56(98) (1962), 301–308
[8] Yu. S. Ilyashenko, “Plotnost individualnogo resheniya i ergodichnost semeistva reshenii uravneniya $\frac{d\xi}{d\eta}=\frac{P(\xi,\eta)}{Q(\xi,\eta)}$”, Matem. zametki, 4 (1968), 741–750 | MR
[9] I. G. Petrovskii, E. M. Landis, “Popravki k statyam "O chisle predelnykh tsiklov uravneniya $\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$, gde $P$ i $Q$ – mnogochleny vtoroi stepeni" i "O chisle predelnykh tsiklov uravneniya $\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$, gde $P$ i $Q$ – polinomy"”, Matem. sb., 48(90) (1959), 253–255 | MR | Zbl