Piecewise linear approximations of embeddings of cells and spheres in codimensions higher than two
Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 321-343 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently the paper of Homma (RZhMat., 1968, 5A492) which implies the possibility of piecewise linear approximation of piecewise linear manifolds in codimensions higher than two was found to contain an error, so that it is at present unclear whether the proof of this result can be completed using Homma's method. The present paper gives a proof of this result for the case of the elementary manifolds (cells and spheres), thus preserving the validity of two recently proved results whose proof were based on Homma's theorem. The method of proof used in this paper differs from Homma's method and is close to Connell's proof for approximation of stable homeomorphisms (RZhMat., 1964, 10A298). Bibliography: 19 titles.
@article{SM_1969_9_3_a3,
     author = {A. V. Chernavskii},
     title = {Piecewise linear approximations of embeddings of cells and spheres in~codimensions higher than two},
     journal = {Sbornik. Mathematics},
     pages = {321--343},
     year = {1969},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_3_a3/}
}
TY  - JOUR
AU  - A. V. Chernavskii
TI  - Piecewise linear approximations of embeddings of cells and spheres in codimensions higher than two
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 321
EP  - 343
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_3_a3/
LA  - en
ID  - SM_1969_9_3_a3
ER  - 
%0 Journal Article
%A A. V. Chernavskii
%T Piecewise linear approximations of embeddings of cells and spheres in codimensions higher than two
%J Sbornik. Mathematics
%D 1969
%P 321-343
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1969_9_3_a3/
%G en
%F SM_1969_9_3_a3
A. V. Chernavskii. Piecewise linear approximations of embeddings of cells and spheres in codimensions higher than two. Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 321-343. http://geodesic.mathdoc.fr/item/SM_1969_9_3_a3/

[1] T. Homma, Lectures, mimeogr., Florida State University, 1965

[2] T. Homma, “A theorem of piecewise linear approximation”, Yokohama Math. J., 14:1,2 (1966), 47–54 | MR | Zbl

[3] H. W. Berkowitz, “Counterexample to a theorem of T. Homma” (ab. 684–264), Notices Amer. Math. Soc., 15:2 (1968), 378

[4] H. W. Berkowitz, “Piecewise linear approximations of homeomorphisms” (ab. 658–47), Notices Amer. Math. Soc., 15:5 (1968), 731 | MR

[5] E. H. Connell, “Approximating stable homeomorphisms by piecewise linear ones”, Ann. Math., 78:2 (1963), 326–338 | DOI | MR | Zbl

[6] E. C. Zeeman, M. Hirsch, “Engulfing”, Bull. Amer. Math. Soc., 72:1 (1966), 113–115 | DOI | MR | Zbl

[7] A. V. Chernavskii, “Gomeomorfizmy $R^n$ $k$-stabilny pri $k\leqslant-3$”, Matem. sb., 70(112) (1966), 605–606

[8] J. L. Bryant, C. L. Seebeck, “Locally nice embeddings in codimension three”, Bull. Amer. Math. Soc., 74:2 (1968), 378–380 | DOI | MR | Zbl

[9] A. V. Chernavskii, “Topologicheskie vlozheniya mnogoobrazii”, DAN SSSR, 187:6 (1969)

[10] E. C. Zeeman, Seminar on combinatorial topology, mimeogr., Inst. Hautes Etudes, 1963

[11] M. H. A. Newman, “The engulfing theorem for topological manifolds”, Ann. Math., 84:3 (1966), 555–571 | DOI | MR | Zbl

[12] D. W. Henderson, “Relative general position”, Pacific J. Math., 18:3 (1968), 513–523 | MR

[13] K. Borsuk, Theory of retracts, Warszawa, 1967 | MR

[14] J. F. P. Hudson, E. C. Zeeman, “On regular neighbourhoods”, Proc. London Math. Soc., 14:56 (1964), 719–745 | DOI | MR | Zbl

[15] E. C. Zeeman, “Unknotting combinatorial balls”, Ann. Math., 78:3 (1963), 501–526 | DOI | MR | Zbl

[16] A. V. Chernavskii, “Gomeomorfizmy evklidova prostranstva i topologicheskie vlozheniya poliedrov v evklidovy prostranstva, II”, Matem. sb., 72(114):4 (1967), 573–601 | MR | Zbl

[17] J. Stailings, “The piecewise linear structure of euclidean space”, Proc. Cambridge Phil. Soc., 58:3 (1962), 481–488 | DOI | MR

[18] A. V. Chernavskii, “Gomeomorfizmy evklidova prostranstva i topologicheskie vlozheniya poliedrov v evklidovy prostranstva, I”, Matem. sb., 68(110):4 (1965), 581–613 | MR | Zbl

[19] R. H. Bing, “Stable homeomorphisms of $E^5$ can be approximated by piecewise linear ones” (ab. 607–16), Notices Amer. Math. Soc., 10:7 (1963), 668