On the Radon--Nikod\'ym theorem
Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 315-319
Voir la notice de l'article provenant de la source Math-Net.Ru
The author shows that in the well-known Radon–Nikodým theorem it is possible to drop the requirement that the space under consideration has $\sigma$-finite measure. The author also gives a partial solution to the problem formulated in a somewhat new fashion concerning the representation of a set function as an integral.
Bibliography: 4 titles.
@article{SM_1969_9_3_a2, author = {G. P. Tolstov}, title = {On the {Radon--Nikod\'ym} theorem}, journal = {Sbornik. Mathematics}, pages = {315--319}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {1969}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/} }
G. P. Tolstov. On the Radon--Nikod\'ym theorem. Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 315-319. http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/