On the Radon–Nikodým theorem
Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 315-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author shows that in the well-known Radon–Nikodým theorem it is possible to drop the requirement that the space under consideration has $\sigma$-finite measure. The author also gives a partial solution to the problem formulated in a somewhat new fashion concerning the representation of a set function as an integral. Bibliography: 4 titles.
@article{SM_1969_9_3_a2,
     author = {G. P. Tolstov},
     title = {On the {Radon{\textendash}Nikod\'ym} theorem},
     journal = {Sbornik. Mathematics},
     pages = {315--319},
     year = {1969},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/}
}
TY  - JOUR
AU  - G. P. Tolstov
TI  - On the Radon–Nikodým theorem
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 315
EP  - 319
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/
LA  - en
ID  - SM_1969_9_3_a2
ER  - 
%0 Journal Article
%A G. P. Tolstov
%T On the Radon–Nikodým theorem
%J Sbornik. Mathematics
%D 1969
%P 315-319
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/
%G en
%F SM_1969_9_3_a2
G. P. Tolstov. On the Radon–Nikodým theorem. Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 315-319. http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/

[1] S. Saks, Teoriya integrala, IL, M., 1949

[2] G. E. Shilov, B. L. Gurevich, Integral, mera, proizvodnaya, Nauka, M., 1967

[3] P. Khalmosh, Teoriya mery, IL, M., 1953

[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl