On the Radon--Nikod\'ym theorem
Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 315-319

Voir la notice de l'article provenant de la source Math-Net.Ru

The author shows that in the well-known Radon–Nikodým theorem it is possible to drop the requirement that the space under consideration has $\sigma$-finite measure. The author also gives a partial solution to the problem formulated in a somewhat new fashion concerning the representation of a set function as an integral. Bibliography: 4 titles.
@article{SM_1969_9_3_a2,
     author = {G. P. Tolstov},
     title = {On the {Radon--Nikod\'ym} theorem},
     journal = {Sbornik. Mathematics},
     pages = {315--319},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/}
}
TY  - JOUR
AU  - G. P. Tolstov
TI  - On the Radon--Nikod\'ym theorem
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 315
EP  - 319
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/
LA  - en
ID  - SM_1969_9_3_a2
ER  - 
%0 Journal Article
%A G. P. Tolstov
%T On the Radon--Nikod\'ym theorem
%J Sbornik. Mathematics
%D 1969
%P 315-319
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/
%G en
%F SM_1969_9_3_a2
G. P. Tolstov. On the Radon--Nikod\'ym theorem. Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 315-319. http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/