On the Radon–Nikodým theorem
Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 315-319
Cet article a éte moissonné depuis la source Math-Net.Ru
The author shows that in the well-known Radon–Nikodým theorem it is possible to drop the requirement that the space under consideration has $\sigma$-finite measure. The author also gives a partial solution to the problem formulated in a somewhat new fashion concerning the representation of a set function as an integral. Bibliography: 4 titles.
@article{SM_1969_9_3_a2,
author = {G. P. Tolstov},
title = {On the {Radon{\textendash}Nikod\'ym} theorem},
journal = {Sbornik. Mathematics},
pages = {315--319},
year = {1969},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/}
}
G. P. Tolstov. On the Radon–Nikodým theorem. Sbornik. Mathematics, Tome 9 (1969) no. 3, pp. 315-319. http://geodesic.mathdoc.fr/item/SM_1969_9_3_a2/