The distribution of poles of rational functions of best approximation and related questions
Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 267-274
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(z)\in H_2$ ($|z|1$), and let $e_n(f)$ and $r_n(f)$ be best approximations of $f$ by means of polynomials and rational functions of degree $\leqslant n$. The fundamental result of this work is the following theorem: if $\varlimsup_{n\to\infty}(e_n(f)-r_n(f))^{1/n}\leqslant\rho1$, then $f(z)$ is analytic in the disk $|z|\rho^{1/2}$. In particular, if $\lim_{n\to\infty}(e_n(f)-r_n(f))^{1/n}=0$, then $f(z)$ is an entire function.
Bibliography: 4 titles.
@article{SM_1969_9_2_a9,
author = {A. L. Levin},
title = {The distribution of poles of rational functions of best approximation and related questions},
journal = {Sbornik. Mathematics},
pages = {267--274},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1969_9_2_a9/}
}
A. L. Levin. The distribution of poles of rational functions of best approximation and related questions. Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/SM_1969_9_2_a9/