The distribution of poles of rational functions of best approximation and related questions
Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 267-274

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)\in H_2$ ($|z|1$), and let $e_n(f)$ and $r_n(f)$ be best approximations of $f$ by means of polynomials and rational functions of degree $\leqslant n$. The fundamental result of this work is the following theorem: if $\varlimsup_{n\to\infty}(e_n(f)-r_n(f))^{1/n}\leqslant\rho1$, then $f(z)$ is analytic in the disk $|z|\rho^{1/2}$. In particular, if $\lim_{n\to\infty}(e_n(f)-r_n(f))^{1/n}=0$, then $f(z)$ is an entire function. Bibliography: 4 titles.
@article{SM_1969_9_2_a9,
     author = {A. L. Levin},
     title = {The distribution of poles of rational functions of best approximation and related questions},
     journal = {Sbornik. Mathematics},
     pages = {267--274},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_2_a9/}
}
TY  - JOUR
AU  - A. L. Levin
TI  - The distribution of poles of rational functions of best approximation and related questions
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 267
EP  - 274
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_2_a9/
LA  - en
ID  - SM_1969_9_2_a9
ER  - 
%0 Journal Article
%A A. L. Levin
%T The distribution of poles of rational functions of best approximation and related questions
%J Sbornik. Mathematics
%D 1969
%P 267-274
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_9_2_a9/
%G en
%F SM_1969_9_2_a9
A. L. Levin. The distribution of poles of rational functions of best approximation and related questions. Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/SM_1969_9_2_a9/