A~function algebra of the second degree on non-localness
Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 253-266

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a function algebra with uniform convergence containing the constants, and let $\mathfrak M_A$ be its maximal ideal space. A continuous function $f$ on $\mathfrak M_A$ is called $f$-local if it coincides, in a neighborhood of each point $m\in\mathfrak M_A$, with some function from the algebra $A$. The algebra $A$ is called local if it contains all $A$-local functions, and nonlocal otherwise. A well-known example of a nonlocal algebra has been constructed by E. Kallin. She also raised the question: is there a smallest local closed subalgebra in $C(\mathfrak M_A)$ containing all the $A$-local functions? In this work we give a negative answer to this question. The appropriate algebra is realized as a subalgebra in $C(S)$, where $S$ is a compactum in $C^5$, and is generated by acertain family of rational functions. Bibliography: 5 titles.
@article{SM_1969_9_2_a8,
     author = {A. D. Varshavskii},
     title = {A~function algebra of the second degree on non-localness},
     journal = {Sbornik. Mathematics},
     pages = {253--266},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_2_a8/}
}
TY  - JOUR
AU  - A. D. Varshavskii
TI  - A~function algebra of the second degree on non-localness
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 253
EP  - 266
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_2_a8/
LA  - en
ID  - SM_1969_9_2_a8
ER  - 
%0 Journal Article
%A A. D. Varshavskii
%T A~function algebra of the second degree on non-localness
%J Sbornik. Mathematics
%D 1969
%P 253-266
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_9_2_a8/
%G en
%F SM_1969_9_2_a8
A. D. Varshavskii. A~function algebra of the second degree on non-localness. Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 253-266. http://geodesic.mathdoc.fr/item/SM_1969_9_2_a8/