Sources of curvature of a~vector field
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 199-211
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is known that for a vector field in three-dimensional space we can introduce the concepts of curvature and mean curvature. In the present article we derive integral formulas for these concepts; these formulas allow us to decide whether a vector field has, for example, singularities in a domain. We explain the influence of the modulus of the curvature of a vector field on the magnitude of its nonholonomity.
We also consider the question of the influence of the curvature of a family of surfaces on the distortion of the enveloping space for a given size of domain.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_1969_9_2_a4,
     author = {Yu. A. Aminov},
     title = {Sources of curvature of a~vector field},
     journal = {Sbornik. Mathematics},
     pages = {199--211},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_2_a4/}
}
                      
                      
                    Yu. A. Aminov. Sources of curvature of a~vector field. Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 199-211. http://geodesic.mathdoc.fr/item/SM_1969_9_2_a4/
