On the spectrum of an elliptic operator of second order
Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 183-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work sufficient conditions are obtained for the absence of a discrete spectrum on the continuous for a selfadjoint elliptic operator of second order. Bibliography: 2 titles.
@article{SM_1969_9_2_a3,
     author = {S. N. Roze},
     title = {On~the spectrum of an elliptic operator of second order},
     journal = {Sbornik. Mathematics},
     pages = {183--197},
     year = {1969},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_2_a3/}
}
TY  - JOUR
AU  - S. N. Roze
TI  - On the spectrum of an elliptic operator of second order
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 183
EP  - 197
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_2_a3/
LA  - en
ID  - SM_1969_9_2_a3
ER  - 
%0 Journal Article
%A S. N. Roze
%T On the spectrum of an elliptic operator of second order
%J Sbornik. Mathematics
%D 1969
%P 183-197
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1969_9_2_a3/
%G en
%F SM_1969_9_2_a3
S. N. Roze. On the spectrum of an elliptic operator of second order. Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 183-197. http://geodesic.mathdoc.fr/item/SM_1969_9_2_a3/

[1] T. Kato, “Svoistva rosta reshenii privedennogo volnovogo uravneniya s peremennym koeffitsientom”, Matematika, 5:1 (1961), 115–135

[2] E. M. Landis, “O nekotorykh svoistvakh reshenii ellipticheskikh uravnenii”, DAN SSSR, 107:5 (1956), 640–643 | MR | Zbl