Best methods of approximation and interpolation of differentiable functions in~the space $C_{[-1,1]}$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 275-289
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper are computed the $n$-diameter of the class
$$
W_r=\{f(x):|f^{(r-1)}(x)-f^{(r-1)}(x')|\leqslant|x-x'|,|x|,|x'|\leqslant1\}
$$
of functions defined on $[-1,1]$ in $C_{[-1,1]}$.
This problem reduces to the variational problem
\begin{gather*}
\lambda_{nr}=\inf||x||,\\
x^{(r+1)}=2\sum_{k=1}^m(-1)^{k+1}\delta(t-t_k),\qquad-1\leqslant t_1\leqslant\dots\leqslant t_m\leqslant1,\quad m\leqslant n,\\
x^r(t)\equiv-1,\qquad t\leqslant-1,
\end{gather*}
whose solution is described in Theorem 1 of the paper.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1969_9_2_a10,
     author = {V. M. Tikhomirov},
     title = {Best methods of approximation and interpolation of differentiable functions in~the space $C_{[-1,1]}$},
     journal = {Sbornik. Mathematics},
     pages = {275--289},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_2_a10/}
}
                      
                      
                    TY  - JOUR
AU  - V. M. Tikhomirov
TI  - Best methods of approximation and interpolation of differentiable functions in~the space $C_{[-1,1]}$
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 275
EP  - 289
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_2_a10/
LA  - en
ID  - SM_1969_9_2_a10
ER  - 
                      
                      
                    V. M. Tikhomirov. Best methods of approximation and interpolation of differentiable functions in~the space $C_{[-1,1]}$. Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 275-289. http://geodesic.mathdoc.fr/item/SM_1969_9_2_a10/
                  
                