On~infinitesimal deformations of convex surfaces with a~boundary condition of generalized translation
Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 151-154

Voir la notice de l'article provenant de la source Math-Net.Ru

It is said that the exterior connection of a surface is almost rigid with $p$, $p\geqslant0$, degrees of freedom if the surface admits of $p$ linearly independent infinitesimal deformations. In this article we establish an almost-rigidity test with three degrees of freedom under a generalized translation for a certain class of convex surfaces with an edge. Bibliography: 2 titles.
@article{SM_1969_9_2_a0,
     author = {V. T. Fomenko},
     title = {On~infinitesimal deformations of convex surfaces with a~boundary condition of generalized translation},
     journal = {Sbornik. Mathematics},
     pages = {151--154},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_2_a0/}
}
TY  - JOUR
AU  - V. T. Fomenko
TI  - On~infinitesimal deformations of convex surfaces with a~boundary condition of generalized translation
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 151
EP  - 154
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_2_a0/
LA  - en
ID  - SM_1969_9_2_a0
ER  - 
%0 Journal Article
%A V. T. Fomenko
%T On~infinitesimal deformations of convex surfaces with a~boundary condition of generalized translation
%J Sbornik. Mathematics
%D 1969
%P 151-154
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_9_2_a0/
%G en
%F SM_1969_9_2_a0
V. T. Fomenko. On~infinitesimal deformations of convex surfaces with a~boundary condition of generalized translation. Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 151-154. http://geodesic.mathdoc.fr/item/SM_1969_9_2_a0/