On~infinitesimal deformations of convex surfaces with a~boundary condition of generalized translation
Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 151-154
Voir la notice de l'article provenant de la source Math-Net.Ru
It is said that the exterior connection of a surface is almost rigid with $p$, $p\geqslant0$, degrees of freedom if the surface admits of $p$ linearly independent infinitesimal deformations. In this article we establish an almost-rigidity test with three degrees of freedom under a generalized translation for a certain class of convex surfaces with an edge.
Bibliography: 2 titles.
@article{SM_1969_9_2_a0,
author = {V. T. Fomenko},
title = {On~infinitesimal deformations of convex surfaces with a~boundary condition of generalized translation},
journal = {Sbornik. Mathematics},
pages = {151--154},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1969_9_2_a0/}
}
TY - JOUR AU - V. T. Fomenko TI - On~infinitesimal deformations of convex surfaces with a~boundary condition of generalized translation JO - Sbornik. Mathematics PY - 1969 SP - 151 EP - 154 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1969_9_2_a0/ LA - en ID - SM_1969_9_2_a0 ER -
V. T. Fomenko. On~infinitesimal deformations of convex surfaces with a~boundary condition of generalized translation. Sbornik. Mathematics, Tome 9 (1969) no. 2, pp. 151-154. http://geodesic.mathdoc.fr/item/SM_1969_9_2_a0/