On~the representation of analytic functions by Dirichlet series
Sbornik. Mathematics, Tome 9 (1969) no. 1, pp. 111-150

Voir la notice de l'article provenant de la source Math-Net.Ru

We have earlier proved (RZhMat., 1966, 2B149, 11B94) a theorem on the representation of an arbitrary function analytic in a closed convex region $\overline D$ by a Dirichlet series in the open region $D$. In this paper we prove that any function analytic in an open convex finite region $D$ and continuous in $\overline D$ can be represented by a Dirichlet series with coefficients which can be computed by means of specific already-known formulas. We also prove that if the convex region $D$ is bounded by a regular analytic curve, then any function analytic in $D$ can be expanded in a Dirichlet series in $D$. These two theorems are based on the following theorem from the theory of entire functions. Let $D$ be a finite open region, $K(\theta)$ the support function of $D$, $h(\theta)=H(-\theta)$, and $\varphi(r)$ a function satisfying the conditions $$ 0\varphi(r)\uparrow\infty,\qquad\lim_{r\to\infty}\frac{\ln\varphi(r)} r=0. $$ Then there exists an entire function $L(\lambda)$ of exponential type with growth indicator $h(\theta)$ and completely regular growth, which satisfies the following conditions: 1) All the zeros $\lambda_1,\lambda_2,\dots$ of $L(\lambda)$ are simple, and $|\lambda_{n+1}|-|\lambda_n|\geqslant h>0$. 2) We have the estimate $$ \bigl|L(re^{i\theta})\bigr|\frac{e^{h(\theta)r}}{\varphi(r)},\qquad r>r_0. $$ 3) The sequence $\{\lambda_n\}$ is part of a sequence $\{\mu_n\}$, $\lim_{n\to\infty}\frac n{|\mu_n|}\infty$, which depends on the region $D$ but not on the function $\varphi(r)$. In this paper we prove an analogous theorem for entire functions of arbitrary finite order $\rho$. Bibliography: 6 titles.
@article{SM_1969_9_1_a4,
     author = {A. F. Leont'ev},
     title = {On~the representation of analytic functions by {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {111--150},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_1_a4/}
}
TY  - JOUR
AU  - A. F. Leont'ev
TI  - On~the representation of analytic functions by Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 111
EP  - 150
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_1_a4/
LA  - en
ID  - SM_1969_9_1_a4
ER  - 
%0 Journal Article
%A A. F. Leont'ev
%T On~the representation of analytic functions by Dirichlet series
%J Sbornik. Mathematics
%D 1969
%P 111-150
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_9_1_a4/
%G en
%F SM_1969_9_1_a4
A. F. Leont'ev. On~the representation of analytic functions by Dirichlet series. Sbornik. Mathematics, Tome 9 (1969) no. 1, pp. 111-150. http://geodesic.mathdoc.fr/item/SM_1969_9_1_a4/