Pseudodifferential equations in unbounded regions with conical structure at infinity
Sbornik. Mathematics, Tome 9 (1969) no. 1, pp. 73-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider pseudodifferential equations of the form \begin{equation} Au\equiv\int_G a(x,x-y)u(y)\,dy=f(x),\qquad x\in G, \tag{1} \end{equation} where $G$ is an unbounded region in $R^n$ which has a smooth boundary $\partial G$ and which is a conical set outside a sphere of sufficiently large radius. The symbol $\widetilde a(x,\xi)$ of the pseudodifferential operator $A$ is either a function which is continuous with respect to $\xi$ on $R^n_\xi$, which is the extension of $R^n_\xi$ obtained by adding a point at infinity, or is a function having polynomial growth as $|\xi|\to\infty$. With respect to $x$ the symbol is bounded, satisfies certain smoothness conditions, and is not necessarily stabilized as $x\to\infty$. We study (1) in the Sobolev–Slobodetskii functional spaces $H^s$. Depending on $s$, the equation (1) becomes a properly posed problem either with general boundary conditions or with additional potentials. For some $s$ we can regard (1) as an integral equation which needs no additional conditions. We will obtain necessary and sufficient conditions under which properly posed problems for the equation (1) will be Noetherian in the Sobolev–Slobodetskii spaces. Bibliography: 17 titles.
@article{SM_1969_9_1_a2,
     author = {V. S. Rabinovich},
     title = {Pseudodifferential equations in unbounded regions with conical structure at infinity},
     journal = {Sbornik. Mathematics},
     pages = {73--92},
     year = {1969},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_1_a2/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Pseudodifferential equations in unbounded regions with conical structure at infinity
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 73
EP  - 92
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_1_a2/
LA  - en
ID  - SM_1969_9_1_a2
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Pseudodifferential equations in unbounded regions with conical structure at infinity
%J Sbornik. Mathematics
%D 1969
%P 73-92
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1969_9_1_a2/
%G en
%F SM_1969_9_1_a2
V. S. Rabinovich. Pseudodifferential equations in unbounded regions with conical structure at infinity. Sbornik. Mathematics, Tome 9 (1969) no. 1, pp. 73-92. http://geodesic.mathdoc.fr/item/SM_1969_9_1_a2/

[1] M. I. Vishik, G. I. Eskin, “Uravneniya v svertkakh v ogranichennoi oblasti”, Uspekhi matem. nauk, XX:3(123) (1965), 89–152

[2] I. B. Simonenko, “Novyi obschii metod issledovaniya lineinykh operatornykh uravnenii tipa singulyarnykh integralnykh uravnenii, I”, Izv. AN SSSR, seriya matem., 29 (1965), 567–586 | MR | Zbl

[3] I. B. Simonenko, “Operatory tipa svertki v konusakh”, Matem. sb., 74(116) (1967), 298–313 | MR | Zbl

[4] L. R. Volevich, B. P. Paneyakh, “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, Uspekhi matem. nauk, XX:5(125) (1965), 3–74

[5] M. G. Krein, “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, Uspekhi matem. nauk, XIII:5(83) (1958), 3–120 | MR

[6] L. S. Goldenshtein, I. Ts. Gokhberg, “O mnogomernom integralnom uravnenii na poluprostranstve s yadrom, zavisyaschim ot raznosti argumentov, i ego diskretnom analoge”, DAN SSSR, 131:1 (1960), 9–42

[7] L. Khermander, Otsenki dlya operatorov, invariantnykh otnositelno sdviga, IL, M., 1962

[8] I. M. Gelfand, D. A. Raikov, G. E. Shilov, Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | MR

[9] J. Kohn, L. Narenberg, “An algebra of pseudodifferential operators”, Comm. Pure Appl. Math., 18:1,2 (1965), 269–305 | DOI | MR | Zbl

[10] M. I. Vishik, G. I. Eskin, “Uravneniya v svertkakh peremennogo poryadka”, Trudy Mosk. matem. ob-va, XVI (1967), 25–50

[11] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, vyp. 1, Fizmatgiz, M., 1959

[12] E. M. Stein, “Note on singular integral”, Proc. Amer. Math. Soc., 1957, no. 2, 150–154 | MR

[13] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam differentsialnykh operatorov, Naukova dumka, Kiev, 1965

[14] L. Khermander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[15] S. G. Krein, “Ob odnoi interpolyatsionnoi teoreme v teorii operatorov”, DAN SSSR, 130:3 (1960), 491–494 | MR | Zbl

[16] L. Khermander, Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya, Psevdodifferentsialnye operatory, Mir, M., 1967

[17] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR | Zbl