The limiting equivalence of the canonical and grand canonical ensembles (low density case)
Sbornik. Mathematics, Tome 9 (1969) no. 1, pp. 1-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is shown that the limiting Gibbs distribution, whose existence was established previously by starting from the grand canonical ensemble, can also be obtained by starting from the canonical ensemble, and both distributions coincide when a certain relation exists between the parameters $\beta$ and $\mu$ (for fixed $\beta$). The proof is based on the local limit theorem for the number of particles. Figures: 4. Bibliography: 12 titles.
@article{SM_1969_9_1_a0,
     author = {A. M. Khalfina},
     title = {The limiting equivalence of the canonical and grand canonical ensembles (low density case)},
     journal = {Sbornik. Mathematics},
     pages = {1--52},
     year = {1969},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_1_a0/}
}
TY  - JOUR
AU  - A. M. Khalfina
TI  - The limiting equivalence of the canonical and grand canonical ensembles (low density case)
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 1
EP  - 52
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_1_a0/
LA  - en
ID  - SM_1969_9_1_a0
ER  - 
%0 Journal Article
%A A. M. Khalfina
%T The limiting equivalence of the canonical and grand canonical ensembles (low density case)
%J Sbornik. Mathematics
%D 1969
%P 1-52
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1969_9_1_a0/
%G en
%F SM_1969_9_1_a0
A. M. Khalfina. The limiting equivalence of the canonical and grand canonical ensembles (low density case). Sbornik. Mathematics, Tome 9 (1969) no. 1, pp. 1-52. http://geodesic.mathdoc.fr/item/SM_1969_9_1_a0/

[1] R. A. Minlos, “Predelnoe raspredelenie Gibbsa”, Funkts. analiz, 1:2 (1967), 60–73 | MR | Zbl

[2] R. A. Minlos, “Regulyarnost predelnogo raspredeleniya Gibbsa”, Funkts. analiz, 1:3 (1967), 40–53 | MR | Zbl

[3] R. L. Dobrushin, “Issledovanie uslovii asimptoticheskogo suschestvovaniya konfiguratsionnogo integrala raspredeleniya Gibbsa”, Teoriya veroyatn. i ee primen., 9:4 (1964), 626–643 | Zbl

[4] R. L. Dobrushin, “Gibbsovskie sluchainye polya dlya reshetchatykh sistem s poparnym vzaimodeistviem”, Funkts. analiz, 2:4 (1968), 31–43 | MR

[5] D. Ruelle, “Correlations functions of classical gases”, Ann. Phys., 25:1 (1963), 109–120 | DOI | MR

[6] O. Penrose, “Convergence of fugacity expansions for fluids and lattice gases”, J. Math. Phys., 4(10) (1963), 1313–1320 | MR

[7] P. A. Minlos, “Lektsii po statisticheskoi fizike”, Uspekhi matem. nauk, XXIII:1(139) (1968), 133–190 | MR

[8] D. Ruelle, O. Landford, “Integral representations of invariant states of $B$-algebra”, J. Math. Phys., 8:7 (1967), 1960–1963 | MR

[9] D. Ruelle, States of classical mechanics, preprint, IHES, 1966 | MR

[10] D. Ruelle, “States of systems”, Comm. Math. Phys., 3:2 (1966), 133–150 | DOI | MR | Zbl

[11] R. L. Dobrushin, R. A. Minlos, “Suschestvovanie i nepreryvnost davleniya v klassicheskoi statisticheskoi fizike”, Teoriya veroyatn. i ee primen., 12:4 (1967), 595–618 | MR

[12] N. N. Bogolyubov, B. I. Khatset, “O nekotorykh matematicheskikh voprosakh teorii statisticheskogo ravnovesiya”, DAN SSSR, 66:3 (1949), 321–324 | MR | Zbl