On a~problem of Mal'tsev
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 599-602
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of A. I. Mal'tsev on the structure of linear groups of finite rank is solved: a linear group over a field is a group of finite rank if and only if it is a finite extension of a solvable group of finite rank.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1969_8_4_a4,
     author = {V. P. Platonov},
     title = {On a~problem of {Mal'tsev}},
     journal = {Sbornik. Mathematics},
     pages = {599--602},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_4_a4/}
}
                      
                      
                    V. P. Platonov. On a~problem of Mal'tsev. Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 599-602. http://geodesic.mathdoc.fr/item/SM_1969_8_4_a4/
