On free products of groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 593-597
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $F=\prod^*G_i$ be a free product with a normal subgroup $R$, and let $V(R)$ be a verbal subgroup of $R$. The main result of this paper asserts that when $R$ is contained in the Cartesian subgroup of $F$, $F/V(R)$ is embeddable in the verbal $V$-wreath product of a $\mathfrak B$-free group by $F/R$ (here $\mathfrak B$ is the variety defined by the laws $V$). This embedding reduces, to a great extent, the study $F/V(R)$ to that of $F/R$ and $R/V(R)$. New as well as known results about $F/V(R)$ are obtained as corollaries of the above-mentioned theorem.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1969_8_4_a3,
     author = {A. L. Shmel'kin},
     title = {On free products of groups},
     journal = {Sbornik. Mathematics},
     pages = {593--597},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_4_a3/}
}
                      
                      
                    A. L. Shmel'kin. On free products of groups. Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 593-597. http://geodesic.mathdoc.fr/item/SM_1969_8_4_a3/
