On free products of groups
Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 593-597

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F=\prod^*G_i$ be a free product with a normal subgroup $R$, and let $V(R)$ be a verbal subgroup of $R$. The main result of this paper asserts that when $R$ is contained in the Cartesian subgroup of $F$, $F/V(R)$ is embeddable in the verbal $V$-wreath product of a $\mathfrak B$-free group by $F/R$ (here $\mathfrak B$ is the variety defined by the laws $V$). This embedding reduces, to a great extent, the study $F/V(R)$ to that of $F/R$ and $R/V(R)$. New as well as known results about $F/V(R)$ are obtained as corollaries of the above-mentioned theorem. Bibliography: 7 titles.
@article{SM_1969_8_4_a3,
     author = {A. L. Shmel'kin},
     title = {On free products of groups},
     journal = {Sbornik. Mathematics},
     pages = {593--597},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_4_a3/}
}
TY  - JOUR
AU  - A. L. Shmel'kin
TI  - On free products of groups
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 593
EP  - 597
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_8_4_a3/
LA  - en
ID  - SM_1969_8_4_a3
ER  - 
%0 Journal Article
%A A. L. Shmel'kin
%T On free products of groups
%J Sbornik. Mathematics
%D 1969
%P 593-597
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_8_4_a3/
%G en
%F SM_1969_8_4_a3
A. L. Shmel'kin. On free products of groups. Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 593-597. http://geodesic.mathdoc.fr/item/SM_1969_8_4_a3/