Theory of factorization of functions meromorphic in the disk
Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 493-592 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The factorization of functions of the class $N$ of functions meromorphic in the disk has been established in the well-known theorem due to R. Nevanlinna. In a monograph the author has constructed a theory of factorization of a family of classes $N_\alpha$ of functions meromorphic in the disk $|z|<1$, which classes are monotonically increasing with increasing $\alpha$ ($-1<\alpha<+\infty$) and in addition $N_0=N$. In the present work, a complete theory of factorization is established, which essentially can be applied to arbitrarily restricted or arbitrarily broad classes of meromorphic functions in the disk $|z|<1$. By applying the generalized operator $L^{(\omega)}$ of Riemann–Liouville type associated with an arbitrary positive continuous function $\omega(x)$ on $[0,1)$, $\omega(x)\in L(0,1)$ ($\omega(0)=1$), a general formula of Jensen–Nevanlinna type is established which relates the values of a meromorphic function to the distribution of its zeros and its poles. This formula leads, essentially, to a new concept of the $\omega$-characteristic function $T_\omega(r)$ in the class $N\{\omega\}$ of bounded $\omega$-characteristic, and of functions $B_\omega(z;z_k)\in N\{\omega\}$ with zeros $\{z_k\}_1^\infty$ which satisfy the condition $\sum_{k=1}^\infty\int_{|z_k|}^1\omega(x)\,dx<+\infty$. Finally, in a series of theorems, parametric representations of the classes $N\{\omega\}$, as well as of the more restricted classes $A\{\omega\}$ of functions analytic in the disk, are established. Also their boundary properties are determined. Along with the above it is proved that every function $F(z)\notin N$ meromorphic in the unit disk belongs to some class $N\{\omega\}$, and hence admits a suitable factorization. Bibliography: 17 titles.
@article{SM_1969_8_4_a2,
     author = {M. M. Dzhrbashyan},
     title = {Theory of factorization of functions meromorphic in the disk},
     journal = {Sbornik. Mathematics},
     pages = {493--592},
     year = {1969},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_4_a2/}
}
TY  - JOUR
AU  - M. M. Dzhrbashyan
TI  - Theory of factorization of functions meromorphic in the disk
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 493
EP  - 592
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1969_8_4_a2/
LA  - en
ID  - SM_1969_8_4_a2
ER  - 
%0 Journal Article
%A M. M. Dzhrbashyan
%T Theory of factorization of functions meromorphic in the disk
%J Sbornik. Mathematics
%D 1969
%P 493-592
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1969_8_4_a2/
%G en
%F SM_1969_8_4_a2
M. M. Dzhrbashyan. Theory of factorization of functions meromorphic in the disk. Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 493-592. http://geodesic.mathdoc.fr/item/SM_1969_8_4_a2/

[1] R. Nevanlinna, Odnoznachnye analiticheskie funktsii, Gostekhizdat, M., L., 1941

[2] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., L., 1950

[3] M. M. Dzhrbashyan, “O kanonicheskom predstavlenii meromorfnykh v edinichnom kruge funktsii”, DAN Arm. SSR, 3:1 (1945), 3–9

[4] M. M. Dzhrbashyan, “K probleme predstavimosti analiticheskikh funktsii”, Soobsch. Inst. matem. i mekh. AN Arm. SSR, 1948, no. 2, 3–40

[5] M. M. Dzhrbashyan, “O parametricheskom predstavlenii nekotorykh obschikh klassov meromorfnykh funktsii v edinichnom kruge”, DAN SSSR, 157:5 (1964), 1024–1027 | Zbl

[6] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[7] M. M. Dzhrbashyan, “Obobschennyi operator Rimana–Liuvillya i nekotorye ego primeneniya”, Izv. AN SSSR, seriya matem., 32 (1968), 1075–1111 | MR | Zbl

[8] F. D. Gakhov, Kraevye zadachi, Fizmatgiz, M., 1963 | MR

[9] M. M. Dzhrbashyan, V. S. Zakharyan, “O faktorizatsii funktsii $B_\alpha$”, Matem. zametki, 4:1 (1968), 3–10 | MR

[10] M. M. Dzhrbashyan, “Ob odnom svoistve funktsii Blyashke”, DAN SSSR, 175:5 (1967), 981–984 | Zbl

[11] M. M. Dzhrbashyan, V. S. Zakharyan, “Granichnye svoistva meromorfnykh funktsii klassa $N_\alpha$”, Izv. AN Arm. SSR, Matematika, 2:5 (1967), 275–294 | MR | Zbl

[12] A. I. Markushevich, Teoriya analiticheskikh funktsii, t. II, Nauka, M., 1968 | Zbl

[13] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, M., 1957 | MR

[14] E. Littlewood, “On functions subharmonic in a circle, I”, J. London Math. Soc., 5:2 (1927), 192–196 | DOI

[15] O. Frostman, Potentiel d'equilibre et capacité des ensembles, Lund, 1935

[16] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[17] J. Schur, “Über Potenzreihen, die im Inneren des Einheitskreises beschränkt sind”, J. Reine und Angew. Math., 147 (1916), 205–232; 148 (1918), 122–145 | Zbl