Asymptotic methods in the theory of ordinary linear differential equations
Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 451-491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider systems of the form \begin{equation} y'=\mu A(x)y \end{equation} on the semiaxis $x\geqslant0$, where $y(x)$ is a column vector with $n$ components, $A(x)$ is an ($n\times n$)-matrix, and $\mu$ is a parameter. We pose the problem of finding the asymptotic behavior of the solutions of equation (1) as $x\to\infty$ and $\mu\to\infty$. Bibliography: 16 titles.
@article{SM_1969_8_4_a1,
     author = {M. V. Fedoryuk},
     title = {Asymptotic methods in the theory of ordinary linear differential equations},
     journal = {Sbornik. Mathematics},
     pages = {451--491},
     year = {1969},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_4_a1/}
}
TY  - JOUR
AU  - M. V. Fedoryuk
TI  - Asymptotic methods in the theory of ordinary linear differential equations
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 451
EP  - 491
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1969_8_4_a1/
LA  - en
ID  - SM_1969_8_4_a1
ER  - 
%0 Journal Article
%A M. V. Fedoryuk
%T Asymptotic methods in the theory of ordinary linear differential equations
%J Sbornik. Mathematics
%D 1969
%P 451-491
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1969_8_4_a1/
%G en
%F SM_1969_8_4_a1
M. V. Fedoryuk. Asymptotic methods in the theory of ordinary linear differential equations. Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 451-491. http://geodesic.mathdoc.fr/item/SM_1969_8_4_a1/

[1] V. F. Butuzov, A. B. Vasileva, M. V. Fedoryuk, “Asimptoticheskie metody v teorii obyknovennykh differentsialnykh uravnenii”, Itogi nauki, Matem. analiz 1967, 6, VINITI, M., 1969, 5–73 | MR | Zbl

[2] G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9 (1908), 219–231 | DOI | MR

[3] W. I. Trjitzinsky, “Analytic theory of linear differential equations”, Acta Math., 62 (1933), 167–226 | DOI | MR | Zbl

[4] O. Perron, “Über Stabilität und asymptotische Verhalten der Integrate von Differentialengleichungensystem”, Math. Z., 29:1 (1928), 129–160 | DOI | MR | Zbl

[5] P. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954

[6] N. Levinson, “The asymptotic nature of solutions of linear systems of differential equations”, Duke Math. J., 15:1 (1948), 111–126 | DOI | MR | Zbl

[7] I. M. Rapoport, O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, AN SSSR, Kiev, 1954

[8] M. V. Fedoryuk, “Asimptotika reshenii obyknovennykh lineinykh differentsialnykh uravnenii $n$-go poryadka”, Dif. uravneniya, 2:4 (1966), 492–507

[9] M. V. Fedoryuk, “Asimptoticheskie metody v teorii odnomernykh singulyarnykh differentsialnykh operatorov”, Trudy Mosk. matem. ob-va, XVI, 1966, 296–345

[10] A. V. Kostin, “Asimptotichni formuli dlya rozv'yazkiv liniinikh sistem zvichainikh diferentsialnikh rivnyan”, DAN USSR, 1962, no. 10, 1293–1298 | MR

[11] A. Devinatz, “The asymptotic nature of the solutions of certain linear systems of differential equations”, Pacific J. Math., 5:1 (1965), 75–83 | MR

[12] M. Iwano, Y. Sibuya, “Reduction of the order of a linear differential equation containing a small parameter”, Kǒdai, Math. Semin. Repts, 15:1 (1963), 1–28 | DOI | MR

[13] L. R. Volevich, “Ob odnoi zadache lineinogo programmirovaniya, voznikayuschei v differentsialnykh uravneniyakh”, Uspekhi matem. nauk, XVIII:3(111) (1963), 155–162

[14] M. V. Fedoryuk, “Asimptotika sobstvennykh znachenii i sobstvennykh funktsii odnomernykh singulyarnykh differentsialnykh operatorov”, DAN SSSR, 169:2 (1966), 288–291 | Zbl

[15] M. A. Naimark, Lineinye differentsialnye operatory, Gostekhizdat, M., 1954

[16] F. W. Olver, “Error analysis of phase-integral methods, I”, J. Research Nat. Bureau Stand., 69B:4 (1965), 271–290 | MR