Asymptotic methods in the theory of ordinary linear differential equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 451-491
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we consider systems of the form
\begin{equation}
y'=\mu A(x)y
\end{equation}
on the semiaxis $x\geqslant0$, where $y(x)$ is a column vector with $n$ components, $A(x)$ is an ($n\times n$)-matrix, and $\mu$ is a parameter. We pose the problem of finding the asymptotic behavior of the solutions of equation (1) as $x\to\infty$ and $\mu\to\infty$.
Bibliography: 16 titles.
			
            
            
            
          
        
      @article{SM_1969_8_4_a1,
     author = {M. V. Fedoryuk},
     title = {Asymptotic methods in the theory of ordinary linear differential equations},
     journal = {Sbornik. Mathematics},
     pages = {451--491},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_4_a1/}
}
                      
                      
                    M. V. Fedoryuk. Asymptotic methods in the theory of ordinary linear differential equations. Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 451-491. http://geodesic.mathdoc.fr/item/SM_1969_8_4_a1/
