On rays of completely regular growth of an entire function
Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 437-450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper solves the problem of approximating a function, subharmonic in the entire plane, in a neighborhood of infinity by the logarithm of the modulus of an entire function. As an application of this result, we prove the existence of entire functions with an arbitrary closed set of rays of completely regular growth. Bibliography: 8 titles.
@article{SM_1969_8_4_a0,
     author = {V. S. Azarin},
     title = {On rays of completely regular growth of an~entire function},
     journal = {Sbornik. Mathematics},
     pages = {437--450},
     year = {1969},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_4_a0/}
}
TY  - JOUR
AU  - V. S. Azarin
TI  - On rays of completely regular growth of an entire function
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 437
EP  - 450
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1969_8_4_a0/
LA  - en
ID  - SM_1969_8_4_a0
ER  - 
%0 Journal Article
%A V. S. Azarin
%T On rays of completely regular growth of an entire function
%J Sbornik. Mathematics
%D 1969
%P 437-450
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1969_8_4_a0/
%G en
%F SM_1969_8_4_a0
V. S. Azarin. On rays of completely regular growth of an entire function. Sbornik. Mathematics, Tome 8 (1969) no. 4, pp. 437-450. http://geodesic.mathdoc.fr/item/SM_1969_8_4_a0/

[1] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[2] M. Brelot, “Etude des fonctions sous-harmoniques au voisinage d'un point singulier”, Ann. Inst. Fourier, I (1949), 121–156 | MR

[3] V. S. Azarin, “O subgarmonicheskikh vo vsem prostranstve funktsiyakh vpolne regulyarnogo rosta”, Zap. Kharkovsk. un-ta, seriya 4, XXVIII (1961), 128–148 | MR

[4] W. K. Hayman, “Questions of regularity connected with the Phragment–Lindelof principle”, J. Math. Pures et Appl., 35:2 (1956), 115–126 | MR | Zbl

[5] V. S. Azarin, “Obobschenie odnoi teoremy Kheimana na subgarmonicheskie funktsii v $n$-mernom konuse”, Matem. sb., 66(108) (1965), 248–264 | MR | Zbl

[6] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Fizmatgiz, M., 1966 | MR

[7] A. A. Goldberg, “Integral po poluadditivnoi mere i ego primenenie k teorii tselykh funktsii, IV”, Matem. sb., 66(108) (1965), 411–457 | MR

[8] I. I. Privalov, Subgarmonicheskie funktsii, Gostekhizdat, M., 1937