On~a~class of infinite-dimensional spaces
Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 409-418
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper is given a new version of the Hurewicz–Wallman characterization of dimension. Analogously to P. S. Aleksandrov's definitions, $W$-infinite-dimensional and $S$-infinite-dimensional spaces are introduced. It is proved that $W$-infinite-dimensional spaces satisfy the heredity condition and the sum theorem. Also, mappings of infinite-dimensional spaces which increase dimension are investigated.
Bibliography: 6 titles.
@article{SM_1969_8_3_a6,
author = {A. I. Vainshtein},
title = {On~a~class of infinite-dimensional spaces},
journal = {Sbornik. Mathematics},
pages = {409--418},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1969_8_3_a6/}
}
A. I. Vainshtein. On~a~class of infinite-dimensional spaces. Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 409-418. http://geodesic.mathdoc.fr/item/SM_1969_8_3_a6/