On~a~class of infinite-dimensional spaces
Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 409-418

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper is given a new version of the Hurewicz–Wallman characterization of dimension. Analogously to P. S. Aleksandrov's definitions, $W$-infinite-dimensional and $S$-infinite-dimensional spaces are introduced. It is proved that $W$-infinite-dimensional spaces satisfy the heredity condition and the sum theorem. Also, mappings of infinite-dimensional spaces which increase dimension are investigated. Bibliography: 6 titles.
@article{SM_1969_8_3_a6,
     author = {A. I. Vainshtein},
     title = {On~a~class of infinite-dimensional spaces},
     journal = {Sbornik. Mathematics},
     pages = {409--418},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_3_a6/}
}
TY  - JOUR
AU  - A. I. Vainshtein
TI  - On~a~class of infinite-dimensional spaces
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 409
EP  - 418
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_8_3_a6/
LA  - en
ID  - SM_1969_8_3_a6
ER  - 
%0 Journal Article
%A A. I. Vainshtein
%T On~a~class of infinite-dimensional spaces
%J Sbornik. Mathematics
%D 1969
%P 409-418
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_8_3_a6/
%G en
%F SM_1969_8_3_a6
A. I. Vainshtein. On~a~class of infinite-dimensional spaces. Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 409-418. http://geodesic.mathdoc.fr/item/SM_1969_8_3_a6/