On a class of infinite-dimensional spaces
Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 409-418
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper is given a new version of the Hurewicz–Wallman characterization of dimension. Analogously to P. S. Aleksandrov's definitions, $W$-infinite-dimensional and $S$-infinite-dimensional spaces are introduced. It is proved that $W$-infinite-dimensional spaces satisfy the heredity condition and the sum theorem. Also, mappings of infinite-dimensional spaces which increase dimension are investigated. Bibliography: 6 titles.
@article{SM_1969_8_3_a6,
author = {A. I. Vainshtein},
title = {On~a~class of infinite-dimensional spaces},
journal = {Sbornik. Mathematics},
pages = {409--418},
year = {1969},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1969_8_3_a6/}
}
A. I. Vainshtein. On a class of infinite-dimensional spaces. Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 409-418. http://geodesic.mathdoc.fr/item/SM_1969_8_3_a6/
[1] E. G. Sklyarenko, “Dve teoremy o beskonechnomernykh prostranstvakh”, DAN SSSR, 143:5 (1962), 1053–1056 | Zbl
[2] A. V. Arkhangelskii, “O zamknutykh otobrazheniyakh, bikompaktnykh mnozhestvakh i odnoi zadache P. S. Aleksandrova”, Matem. sb., 69 (111) (1966), 13–34
[3] B. T. Levshenko, “O silno beskonechnomernykh prostranstvakh”, Vestnik MGU, seriya matem., 1959, no. 5, 219–228
[4] V. Gurevich, G. Volmen, Teoriya razmernosti, IL, M., 1948
[5] B. T. Levshenko, “O beskonechnomernykh prostranstvakh”, DAN SSSR, 139:2 (1961), 286–289 | Zbl
[6] P. S. Aleksandrov, “O nekotorykh rezultatakh v teorii topologicheskikh prostranstv, poluchennykh za poslednie 25 let”, Uspekhi matem. nauk, XV:2(92) (1960), 25–95