Densely embedded ideals of semigroups
Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 401-408

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is the following theorem: A semigroup with equi-operative elements cannot be a densely embedded ideal of a semigroup. This theorem, by generalizing an earlier result by the author, solves a problem that has remained open for a number of years. In conjunction with some results by L. M. Gluskin, this yields several corollaries containing conclusive results with regard to densely embedded ideals. Bibliography: 14 titles.
@article{SM_1969_8_3_a5,
     author = {L. N. Shevrin},
     title = {Densely embedded ideals of semigroups},
     journal = {Sbornik. Mathematics},
     pages = {401--408},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_3_a5/}
}
TY  - JOUR
AU  - L. N. Shevrin
TI  - Densely embedded ideals of semigroups
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 401
EP  - 408
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1969_8_3_a5/
LA  - en
ID  - SM_1969_8_3_a5
ER  - 
%0 Journal Article
%A L. N. Shevrin
%T Densely embedded ideals of semigroups
%J Sbornik. Mathematics
%D 1969
%P 401-408
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1969_8_3_a5/
%G en
%F SM_1969_8_3_a5
L. N. Shevrin. Densely embedded ideals of semigroups. Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 401-408. http://geodesic.mathdoc.fr/item/SM_1969_8_3_a5/