On the triviality of families of compact complex spaces
Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 335-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proves the following theorem (a generalization of the corresponding Grauert–Fischer theorem): if there is a holomorphic deformation $X_s$ of a compact complex space (in the sense of Serre) $X$, where the parameter $s$ of the deformation runs through the complex space $S$, and if all the $X_s$ are isomorphic to $X$, then the deformation is trivial. Bibliography: 7 titles.
@article{SM_1969_8_3_a1,
     author = {P. L. Polyakov},
     title = {On~the triviality of families of compact complex spaces},
     journal = {Sbornik. Mathematics},
     pages = {335--344},
     year = {1969},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_3_a1/}
}
TY  - JOUR
AU  - P. L. Polyakov
TI  - On the triviality of families of compact complex spaces
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 335
EP  - 344
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1969_8_3_a1/
LA  - en
ID  - SM_1969_8_3_a1
ER  - 
%0 Journal Article
%A P. L. Polyakov
%T On the triviality of families of compact complex spaces
%J Sbornik. Mathematics
%D 1969
%P 335-344
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1969_8_3_a1/
%G en
%F SM_1969_8_3_a1
P. L. Polyakov. On the triviality of families of compact complex spaces. Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 335-344. http://geodesic.mathdoc.fr/item/SM_1969_8_3_a1/

[1] A. Douady, “Le probleme des modules pour les sous-espaces analytiques compactes d'un espace analytique donné”, Ann. Inst. Fourier, 16:1 (1966), 1–95 | MR | Zbl

[2] H. Grauert, W. Fischer, “Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten”, Nachr. Akad. Wiss. Göttingen, 1905, no. 6, 89–94 | MR

[3] H. Kerner, “Familien kompakter und holomorph-vollständiger komplexer Räume”, Math. Z., 92:3 (1966), 225–233 | DOI | MR | Zbl

[4] H. Grauert, H. Kerner, “Deformationen von Singularitäten komplexer Räume”, Math. Ann., 153:3 (1964), 236–260 | DOI | MR | Zbl

[5] X. Khironaka, “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1966), 2–70

[6] R. Remmert, “Holomorphe und meromorphe Abbildungen kompexer Räume”, Math. Ann., 133:4 (1957), 328–370 | DOI | MR | Zbl

[7] G. Grauert, “Odna teorema iz teorii analiticheskikh puchkov”, Kompleksnye prostranstva, Mir, M., 1965 | MR