On~the triviality of families of compact complex spaces
Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 335-344
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper proves the following theorem (a generalization of the corresponding Grauert–Fischer theorem): if there is a holomorphic deformation $X_s$ of a compact complex space (in the sense of Serre) $X$, where the parameter $s$ of the deformation runs through the complex space $S$, and if all the $X_s$ are isomorphic to $X$, then the deformation is trivial.
Bibliography: 7 titles.
@article{SM_1969_8_3_a1,
author = {P. L. Polyakov},
title = {On~the triviality of families of compact complex spaces},
journal = {Sbornik. Mathematics},
pages = {335--344},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1969_8_3_a1/}
}
P. L. Polyakov. On~the triviality of families of compact complex spaces. Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 335-344. http://geodesic.mathdoc.fr/item/SM_1969_8_3_a1/