Local contractibility of the group of homeomorphisms of a manifold
Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 287-333 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the group of homeomorphisms of an arbitrary topological manifold is considered, with either the compact-open, uniform (relative to a fixed metric), or majorant topology. In the latter topology, a basis of neighborhoods of the identity is given by the strictly positive functions on the manifold, a homeomorphism being in the neighborhood determined by such a function if it moves each point less than the value of this function at the point. The main result of the paper is the proof of the local contractibility of the group of homeomorphisms in the majorant topology. Examples are easily constructed to show that this assertion is false for the other two topologies for open manifolds. In the case of a compact manifold the three topologies coincide. In conclusion a number of corollaries are given; for example, if a homeomorphism of a manifold can be approximated by stable homeomorphisms then it is itself stable. Figures: 4. Bibliography: 14 titles.
@article{SM_1969_8_3_a0,
     author = {A. V. \v{C}ernavskiǐ},
     title = {Local contractibility of the group of homeomorphisms of a~manifold},
     journal = {Sbornik. Mathematics},
     pages = {287--333},
     year = {1969},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_3_a0/}
}
TY  - JOUR
AU  - A. V. Černavskiǐ
TI  - Local contractibility of the group of homeomorphisms of a manifold
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 287
EP  - 333
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1969_8_3_a0/
LA  - en
ID  - SM_1969_8_3_a0
ER  - 
%0 Journal Article
%A A. V. Černavskiǐ
%T Local contractibility of the group of homeomorphisms of a manifold
%J Sbornik. Mathematics
%D 1969
%P 287-333
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1969_8_3_a0/
%G en
%F SM_1969_8_3_a0
A. V. Černavskiǐ. Local contractibility of the group of homeomorphisms of a manifold. Sbornik. Mathematics, Tome 8 (1969) no. 3, pp. 287-333. http://geodesic.mathdoc.fr/item/SM_1969_8_3_a0/

[1] R. F. Arens, “Topologies for bomeomorphism groups”, Amer. J. Math., 68:4 (1946), 593–610 | DOI | MR | Zbl

[2] P. H. Crowell, Invertible isotopies, Proc. Amer. Math. Soc., 14, no. 4, 1963 | DOI | MR | Zbl

[3] J. Dugundgji, Topology, Boston, 1966

[4] Xy Sy Tszyan, Teoriya gomotopii, Mir, M., 1964

[5] E. Dyer, M. E. Hamstrom, “Regular mappings and the space of homeomorphisms on a $2$-manifold”, Duke Math. J., 81:3 (1960), 393–420 | MR

[6] M. E. Hamstrom, “Regular mappings and the space of homeomorphisms on a $3$-manifold”, Mem. Amer. Math. Soc., 40 (1961) | MR | Zbl

[7] J. A1exander, “On the deformation of an $n$-cell”, Proc. Amer. Math. Soc., 9:3 (1923), 406–407

[8] J. M. Kister, “Small isotopies in euclidean spaces and $3$-manifolds”, Bull. Amer. Math. Soc., 65:6 (1959), 371–373 | DOI | MR | Zbl

[9] M. Brown, “Locally flat imbeddings of topological manifolds”, Ann. Math., 75:2 (1962), 331–342 | DOI | MR

[10] W. Browder, J. Levine, G. R. Livesay, “Finding a boundary for an open manifold”, Amer. J. Math., 87:4 (1965), 1017–1028 | DOI | MR | Zbl

[11] C. H. Edwards Jr., “Concentricity in $3$-manifolds”, Trans. Amer. Math. Soc., 113:3 (1964), 406–423 | DOI | MR | Zbl

[12] V. L. Golo, “Ob odnom invariante otkrytykh mnogoobrazii”, Izv. AN SSSR, seriya matem., 31 (1967), 1091–1104 | MR | Zbl

[13] M. Brown, H. Gluck, “Stable structures on manifolds”, Ann. Math., 79:1 (1964), 1–48 | DOI | MR

[14] E. H. Connell, “Approximating stable homeomorphisms by piecewise linear ones”, Ann. Math., 78:2 (1963), 326–338 | DOI | MR | Zbl