Application of E. Helly's theorem to convex programming, problems of best approximation and related questions
Sbornik. Mathematics, Tome 8 (1969) no. 2, pp. 235-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{SM_1969_8_2_a5,
     author = {V. L. Levin},
     title = {Application of {E.~Helly's} theorem to convex programming, problems of best approximation and related questions},
     journal = {Sbornik. Mathematics},
     pages = {235--247},
     year = {1969},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_8_2_a5/}
}
TY  - JOUR
AU  - V. L. Levin
TI  - Application of E. Helly's theorem to convex programming, problems of best approximation and related questions
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 235
EP  - 247
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1969_8_2_a5/
LA  - en
ID  - SM_1969_8_2_a5
ER  - 
%0 Journal Article
%A V. L. Levin
%T Application of E. Helly's theorem to convex programming, problems of best approximation and related questions
%J Sbornik. Mathematics
%D 1969
%P 235-247
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1969_8_2_a5/
%G en
%F SM_1969_8_2_a5
V. L. Levin. Application of E. Helly's theorem to convex programming, problems of best approximation and related questions. Sbornik. Mathematics, Tome 8 (1969) no. 2, pp. 235-247. http://geodesic.mathdoc.fr/item/SM_1969_8_2_a5/

[1] E. Khelli, “O sovokupnosti vypuklykh tel s obschimi tochkami”, Uspekhi matem. nauk, 1936, no. II, 80–81

[2] I. G. Dukor, “K teoreme Khelli o sovokupnosti vypuklykh tel s obschimi tochkami”, Uspekhi matem. nauk, 1944, no. X, 60–61 | MR | Zbl

[3] A. Ya. Dubovitskii, A. A. Milyutin, “Zadachi na ekstremum pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiziki, 5:3 (1965), 395–453 | Zbl

[4] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962

[5] K. Dzh. Errou, L. Gurvits, X. Udzava, Issledovaniya po lineinomu i nelineinomu programmirovaniyu, IL, M., 1963

[6] A. Ya. Dubovitskii, A. A. Milyutin, “Zadachi na ekstremum pri nalichii ogranichenii”, DAN SSSR, 149:4 (1963), 759–762

[7] B. N. Pshenichnyi, “Vypukloe programmirovanie v normirovannom prostranstve”, Kibernetika, 1966, no. 5, 46–54 | MR

[8] V. L. Levin, “O nekotorykh svoistvakh opornykh funktsionalov”, Matem. zametki, 4:6 (1968), 685–696 | MR | Zbl

[9] A. Haar, “Über lineare Ungleichungen”, Acta Litt. Scient. Univ. Hung., 2 (1924), 1–14 | Zbl

[10] S. H. Chernikov, “O teoreme Xaapa dlya beskonechnykh sistem lineinykh neravenstv”, Uspekhi matem. nauk, XVIII:5(113) (1963), 199–200

[11] S. N. Chernikov, Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl

[12] E. G. Golshtein, “Ob odnom obobschenii chebyshevskoi zadachi nailuchshego priblizheniya”, Uspekhi matem. nauk, XVI:4(100) (1961), 208

[13] E. G. Golshtein, “Ob odnoi obschei postanovke zadachi nailuchshego priblizheniya”, DAN SSSR, 144:1 (1962), 21–22

[14] E. G. Golshtein, Issledovaniya po matematicheskomu programmirovaniyu i teorii priblizhenii, Doktorskaya dissertatsiya, M., 1967

[15] S. Ya. Khavinson, “Ob approksimatsii elementami vypuklykh mnozhestv”, DAN SSSR, 172:2 (1967), 294–297 | Zbl

[16] D. Blekuell, M. A. Girshik, Teoriya igr i statisticheskikh reshenii, IL, M., 1958

[17] L. G. Shnirelman, “O ravnomernykh priblizheniyakh”, Izv. AN SSSR, seriya matem., 2 (1938), 53–60

[18] H. Rademacher, I. J. Schoenberg, “Helly's theorems on convex domains and Tchebycheff's approximation problem”, Canad. J. Math., 2 (1950), 245–256 | MR | Zbl

[19] R. T. Rockafellar, “Helly's theorem and minima of convex functions”, Duke Math. J., 32:3 (1965), 381–397 | DOI | MR | Zbl

[20] I. Sh. Pinsker, “Metod alternansa”, Avtomatika i telemekhanika, XXV:3 (1964), 302–311 | MR