On nonlinear operators having weakly closed range, and quasilinear elliptic equations
Sbornik. Mathematics, Tome 7 (1969) no. 2, pp. 227-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{SM_1969_7_2_a3,
     author = {S. I. Pokhozhaev},
     title = {On~nonlinear operators having weakly closed range, and quasilinear elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {227--250},
     year = {1969},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_7_2_a3/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On nonlinear operators having weakly closed range, and quasilinear elliptic equations
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 227
EP  - 250
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1969_7_2_a3/
LA  - en
ID  - SM_1969_7_2_a3
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On nonlinear operators having weakly closed range, and quasilinear elliptic equations
%J Sbornik. Mathematics
%D 1969
%P 227-250
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1969_7_2_a3/
%G en
%F SM_1969_7_2_a3
S. I. Pokhozhaev. On nonlinear operators having weakly closed range, and quasilinear elliptic equations. Sbornik. Mathematics, Tome 7 (1969) no. 2, pp. 227-250. http://geodesic.mathdoc.fr/item/SM_1969_7_2_a3/

[1] F. Hausdorff, “Zur Theorie der linearen metrischen Räume”, J. Reine Angew. Math., 167 (1932), 294–311 ; F. Khausdorf, Teoriya mnozhestv, Dobavlenie, ONTI, M., 1937 | Zbl

[2] N. Danford, Dzh. T. Shvarts, Lineinye operatory (obschaya teoriya), IL, M., 1962

[3] M. M. Vainberg, Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956

[4] L. A. Lyusternik, V. I. Sobolev, Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[5] M. A. Krasnoselskii, Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR

[6] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, SO AN SSSR, Novosibirsk, 1962

[7] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[8] S. Agmon, A. Duglis, L. Nirenberg, Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962

[9] F. E. Browder, “A continuity property for adjoints of closed operators in Banach spaces and its application to elliptic boundary value problem”, Duke Math. J., 28:2 (1961), 157–182 | DOI | MR | Zbl

[10] I. Ts. Gokhberg, M. G. Krein, “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, Uspekhi matem. nauk, XII:2(74) (1957), 43–118

[11] M. I. Vishik, “Kvazilineinye silno ellipticheskie sistemy differentsialnykh uravnenii, imeyuschie divergentnuyu formu”, Trudy Mosk. matem. ob-va, 12, 1963, 125–184 | Zbl

[12] F. E. Browder, “Non-linear elliptic boundary value problems”, Bull. Amer. Math. Soc., 69:6 (1963), 862–874 | DOI | MR | Zbl

[13] Yu. A. Dubinskii, “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67(109) (1965), 609–642 | MR | Zbl

[14] A. D. Aleksandrov, “Usloviya edinstvennosti i otsenki resheniya zadachi Dirikhle”, Vestnik LGU, seriya matem., mekh. i astr., 13:3 (1963), 5–29 | MR | Zbl

[15] M. I.-M. Bonp, “Principe du maximum dans les espaces de Sobolev”, C.R. Acad. Sci Paris, Serie A, 265 (1967), 333–336 | MR

[16] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR