On the number of fixed points of a linear-fractional transformation of an operator ball onto itself
Sbornik. Mathematics, Tome 7 (1969) no. 2, pp. 195-204
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{SM_1969_7_2_a1,
author = {E. A. Larionov},
title = {On~the number of fixed points of a~linear-fractional transformation of an~operator ball onto itself},
journal = {Sbornik. Mathematics},
pages = {195--204},
year = {1969},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1969_7_2_a1/}
}
E. A. Larionov. On the number of fixed points of a linear-fractional transformation of an operator ball onto itself. Sbornik. Mathematics, Tome 7 (1969) no. 2, pp. 195-204. http://geodesic.mathdoc.fr/item/SM_1969_7_2_a1/
[1] Yu. P. Ginzburg, I. S. Iokhvidov, “Issledovaniya po geometrii beskonechnomernykh prostranstv s bilineinoi metrikoi”, Uspekhi matem. nauk, XVII:4(106) (1962), 3–66 | MR
[2] M. G. Krein, Yu. L. Shmulyan, “Ob odnom klasse operatorov v prostranstve s indefinitnoi metrikoi”, DAN SSSR, 170:1 (1966), 34–37 | MR | Zbl
[3] Yu. P. Ginzburg, “O $J$-nerastyagivayuschikh operatorakh v gilbertovom prostranstve”, Nauchn. zap. Odessk. ped. in-ta, 22:1 (1968), 13–20 | MR
[4] R. S. Phillips, “The extensions of dual subspaces invariant under an algebra”, Proc. Internat. Sympos. on Linear Spaces (Ierusalem, 1960), Acad. Press, 1961, 366–398 ; Matematika, 8:6 (1964), 81–108 | MR