Connected, complete, locally bounded fields. Complete not locally bounded fields
Sbornik. Mathematics, Tome 5 (1968) no. 3, pp. 433-449

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SM_1968_5_3_a8,
     author = {A. F. Mutylin},
     title = {Connected, complete, locally bounded fields. {Complete} not locally bounded fields},
     journal = {Sbornik. Mathematics},
     pages = {433--449},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1968_5_3_a8/}
}
TY  - JOUR
AU  - A. F. Mutylin
TI  - Connected, complete, locally bounded fields. Complete not locally bounded fields
JO  - Sbornik. Mathematics
PY  - 1968
SP  - 433
EP  - 449
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1968_5_3_a8/
LA  - en
ID  - SM_1968_5_3_a8
ER  - 
%0 Journal Article
%A A. F. Mutylin
%T Connected, complete, locally bounded fields. Complete not locally bounded fields
%J Sbornik. Mathematics
%D 1968
%P 433-449
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1968_5_3_a8/
%G en
%F SM_1968_5_3_a8
A. F. Mutylin. Connected, complete, locally bounded fields. Complete not locally bounded fields. Sbornik. Mathematics, Tome 5 (1968) no. 3, pp. 433-449. http://geodesic.mathdoc.fr/item/SM_1968_5_3_a8/