Behavior of the solutions of the equation $\ddot x+p(t)\dot x+q(t)x=0$ in the nonoscillatory case
Sbornik. Mathematics, Tome 4 (1968) no. 1, pp. 33-55

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SM_1968_4_1_a3,
     author = {A. Yu. Levin},
     title = {Behavior of the solutions of the equation $\ddot x+p(t)\dot x+q(t)x=0$ in the nonoscillatory case},
     journal = {Sbornik. Mathematics},
     pages = {33--55},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1968_4_1_a3/}
}
TY  - JOUR
AU  - A. Yu. Levin
TI  - Behavior of the solutions of the equation $\ddot x+p(t)\dot x+q(t)x=0$ in the nonoscillatory case
JO  - Sbornik. Mathematics
PY  - 1968
SP  - 33
EP  - 55
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1968_4_1_a3/
LA  - en
ID  - SM_1968_4_1_a3
ER  - 
%0 Journal Article
%A A. Yu. Levin
%T Behavior of the solutions of the equation $\ddot x+p(t)\dot x+q(t)x=0$ in the nonoscillatory case
%J Sbornik. Mathematics
%D 1968
%P 33-55
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1968_4_1_a3/
%G en
%F SM_1968_4_1_a3
A. Yu. Levin. Behavior of the solutions of the equation $\ddot x+p(t)\dot x+q(t)x=0$ in the nonoscillatory case. Sbornik. Mathematics, Tome 4 (1968) no. 1, pp. 33-55. http://geodesic.mathdoc.fr/item/SM_1968_4_1_a3/