Uniqueness of entire function and its linear differential polynomial
Serdica Mathematical Journal, Tome 50 (2024) no. 2, pp. 173-182
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we investigate the uniqueness problem of entire function \(f\) and its linear differential polynomial\begin{equation*}a_{k}\left( z\right) f^{\left( k\right) }+a_{k-1}\left( z\right) f^{\left(k-1\right) }+\cdots+a_{1}\left( z\right) f'\end{equation*}sharing an entire function \(a\equiv a\left( z\right)\) counting multiplicities(CM) with\begin{equation*}\sigma \left( a\right) <\sigma \left( f\right)\end{equation*}under some restrictions imposed on the coefficients \(a_{j}\left( z\right) \left( {j=1,2,\dots,k}\right)\). Our result improves and generalizes some earlier results.
Keywords:
order growth, entire function, value sharing, linear differential polynomial, 30D35, 34M03, 34M05
@article{SMJ2_2024_50_2_a5,
author = {Biswas, Manab and Pramanik, Dilip},
title = {Uniqueness of entire function and its linear differential polynomial},
journal = {Serdica Mathematical Journal},
pages = {173--182},
year = {2024},
volume = {50},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2024_50_2_a5/}
}
Biswas, Manab; Pramanik, Dilip. Uniqueness of entire function and its linear differential polynomial. Serdica Mathematical Journal, Tome 50 (2024) no. 2, pp. 173-182. http://geodesic.mathdoc.fr/item/SMJ2_2024_50_2_a5/