Minimal timelike surfaces in the Lorentz–Minkowski 3-space and their canonical parameters
Serdica Mathematical Journal, Tome 49 (2023) no. 4, pp. 301-316.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We study minimal timelike surfaces in \(\mathbb R^3_1\) using a special Weierstrass-type formula in terms of holomorphic functions defined in the algebra of the double (split-complex) numbers. We present a method of obtaining an equation of a minimal timelike surface in terms of canonical parameters, which play a role similar to the role of the natural parameters of curves in \(\mathbb R^3\). Having one holomorphic function that generates a minimal timelike surface, we find all holomorphic functions that generate the same surface. In this way we give a correspondence between a minimal timelike surface and a class of holomorphic functions. As an application, we prove that the Enneper surfaces are the only minimal timelike surfaces in \(\mathbb R^3_1\) with polynomial parametrization of degree 3 in isothermal parameters.
Keywords: timelike surfaces, canonical parameters, Weierstrass formula, 53A10, 53B30, 53C50
@article{SMJ2_2023_49_4_a5,
     author = {Kassabov, Ognian and Milousheva, Velichka},
     title = {Minimal timelike surfaces in the {Lorentz{\textendash}Minkowski} 3-space and their canonical parameters},
     journal = {Serdica Mathematical Journal},
     pages = {301--316},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a5/}
}
TY  - JOUR
AU  - Kassabov, Ognian
AU  - Milousheva, Velichka
TI  - Minimal timelike surfaces in the Lorentz–Minkowski 3-space and their canonical parameters
JO  - Serdica Mathematical Journal
PY  - 2023
SP  - 301
EP  - 316
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a5/
LA  - en
ID  - SMJ2_2023_49_4_a5
ER  - 
%0 Journal Article
%A Kassabov, Ognian
%A Milousheva, Velichka
%T Minimal timelike surfaces in the Lorentz–Minkowski 3-space and their canonical parameters
%J Serdica Mathematical Journal
%D 2023
%P 301-316
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a5/
%G en
%F SMJ2_2023_49_4_a5
Kassabov, Ognian; Milousheva, Velichka. Minimal timelike surfaces in the Lorentz–Minkowski 3-space and their canonical parameters. Serdica Mathematical Journal, Tome 49 (2023) no. 4, pp. 301-316. http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a5/