Minimal timelike surfaces in the Lorentz–Minkowski 3-space and their canonical parameters
Serdica Mathematical Journal, Tome 49 (2023) no. 4, pp. 301-316
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We study minimal timelike surfaces in \(\mathbb R^3_1\) using a special Weierstrass-type formula in terms of holomorphic functions defined in the algebra of the double (split-complex) numbers. We present a method of obtaining an equation of a minimal timelike surface in terms of canonical parameters, which play a role similar to the role of the natural parameters of curves in \(\mathbb R^3\). Having one holomorphic function that generates a minimal timelike surface, we find all holomorphic functions that generate the same surface. In this way we give a correspondence between a minimal timelike surface and a class of holomorphic functions. As an application, we prove that the Enneper surfaces are the only minimal timelike surfaces in \(\mathbb R^3_1\) with polynomial parametrization of degree 3 in isothermal parameters.
Keywords:
timelike surfaces, canonical parameters, Weierstrass formula, 53A10, 53B30, 53C50
@article{SMJ2_2023_49_4_a5,
author = {Kassabov, Ognian and Milousheva, Velichka},
title = {Minimal timelike surfaces in the {Lorentz{\textendash}Minkowski} 3-space and their canonical parameters },
journal = {Serdica Mathematical Journal},
pages = {301--316},
year = {2023},
volume = {49},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a5/}
}
TY - JOUR AU - Kassabov, Ognian AU - Milousheva, Velichka TI - Minimal timelike surfaces in the Lorentz–Minkowski 3-space and their canonical parameters JO - Serdica Mathematical Journal PY - 2023 SP - 301 EP - 316 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a5/ LA - en ID - SMJ2_2023_49_4_a5 ER -
Kassabov, Ognian; Milousheva, Velichka. Minimal timelike surfaces in the Lorentz–Minkowski 3-space and their canonical parameters. Serdica Mathematical Journal, Tome 49 (2023) no. 4, pp. 301-316. http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a5/