Newton's method for generalized equations under weak conditions
Serdica Mathematical Journal, Tome 49 (2023) no. 4, pp. 269-282.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

A local convergence analysis is developed for Newton’s method in order to approximate a solution of a generalized equations in a Banach space setting. The convergence conditions are based on generalized continuity conditions on the Fr´echet derivative of the operator involved and the Aubin property. The specialized cases of our results extend earlier ones using similar information.
Keywords: Banach space, local convergence, Newton's method, generalized equation, 34A34, 65B99, 65P30, 65H05
@article{SMJ2_2023_49_4_a3,
     author = {Argyros, Ioannis and George, Santhosh},
     title = {Newton's method for generalized equations under weak conditions},
     journal = {Serdica Mathematical Journal},
     pages = {269--282},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a3/}
}
TY  - JOUR
AU  - Argyros, Ioannis
AU  - George, Santhosh
TI  - Newton's method for generalized equations under weak conditions
JO  - Serdica Mathematical Journal
PY  - 2023
SP  - 269
EP  - 282
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a3/
LA  - en
ID  - SMJ2_2023_49_4_a3
ER  - 
%0 Journal Article
%A Argyros, Ioannis
%A George, Santhosh
%T Newton's method for generalized equations under weak conditions
%J Serdica Mathematical Journal
%D 2023
%P 269-282
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a3/
%G en
%F SMJ2_2023_49_4_a3
Argyros, Ioannis; George, Santhosh. Newton's method for generalized equations under weak conditions. Serdica Mathematical Journal, Tome 49 (2023) no. 4, pp. 269-282. http://geodesic.mathdoc.fr/item/SMJ2_2023_49_4_a3/